Skip to main content
Log in

Toxicity of butene-fipronil, in comparison with seven other insecticides, in Leptinotarsa decemlineata and Drosophila melanogaster

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The speed of toxic action of an insecticide is an indicator for control efficacy and has considerable practical importance. For agricultural pest control, fast-acting is an important feature for an insecticide to consistently reduce the amount of feeding damage. Butene-fipronil is a novel compound obtained via the structural modification of fipronil. However, information about the toxicity and speed of toxic action is still limited. In the present paper, we compared the toxic feature of butene-fipronil with seven other insecticides, of which imidacloprid and abamectin are slow-acting insecticides, and acephate, endosulfan, methomyl, α-cypermethrin and spinosad are fast-acting insecticides. We found that the contact and stomach toxicities of butene-fipronil were among the highest ever estimated to Leptinotarsa decemlineata and Drosophila melanogaster. The speed of toxic action of butene-fipronil was determined using median lethal time (LT50) at a dose (concentration) equivalent to LD80 values. For L. decemlineata, the values for butene-fipronil, imidacloprid, abamectin, acephate, endosulfan, methomyl, cypermethrin and spinosad were calculated to be 39.9, 36.5, 37.5, 20.2, 22.4, 23.8, 16.4 and 23.1 h, respectively. Those for D. melanogaster were 29.8, 31.5, 29.4, 14.0, 20.3, 18.1, 13.5, and 20.1 h, respectively. ANOVA analysis showed that butene-fipronil, imidacloprid, abamectin had similar LT50 values, whereas acephate, endosulfan, methomyl, spinosad and cypermethrin had comparable LT50 values. Thus, butene-fipronil belongs to slow-acting insecticides. Our results provide more empirical information for butene-fipronil potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott, W. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  • Alyokhin, A. (2009). Colorado potato beetle management on potatoes: current challenges and future prospects. Fruit, Vegetable and Cereal Science and Biotechnology, 3, 10–19.

    Google Scholar 

  • Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G., & Grafius, E. (2008). Colorado potato beetle resistance to insecticides. American Journal of Potato Research, 85, 395–413.

    Article  Google Scholar 

  • Arain, M. S., Hu, X.-X., & Li, G.-Q. (2014). Assessment of toxicity and potential risk of butene-fipronil using Drosophila melanogaster, in comparison to nine conventional insecticides. Bulletin of Environmental Contamination and Toxicology, 92, 190–195.

    Article  CAS  PubMed  Google Scholar 

  • Bettini, S., Boccacci, M., & Natalizi, G. (1958). A comparative study on the speed of action of some halogen-containing thiol alkylating agents on resistant house flies. Journal of Economic Entomology, 51, 880–882.

    Article  CAS  Google Scholar 

  • Bianchi, F., Joosten, N. N., Vlak, J. M., & Van Derwerf, W. (2000). Greenhouse evaluation of dose- and time-mortality relationships of two nucleopolyhedroviruses for the control of beet armyworm, Spodoptera exigua, on chrysanthemum. Biological Control, 19, 252–258.

    Article  Google Scholar 

  • Brévault, T., Heuberger, S., Zhang, M., Ellers-Kirk, C., Ni, X., Masson, L., Li, X., Tabashnik, B. E., & Carrière, Y. (2013). Potential shortfall of pyramided transgenic cotton for insect resistance management. Proceedings of the National Academy of Sciences of the United States of America, 110, 5806–5811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buczkowski, G., Kopanic, R. J., Jr., & Schal, C. (2001). Transfer of ingested insecticides among cockroaches: effects of active ingredient, bait formulation, and assay procedures. Journal of Economic Entomology, 94, 1229–1236.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, F. (1926). Speed of toxic action of arsenic in the silkworm. The Journal of General Physiology, 9, 433–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casida, J. E., & Durkin, K. A. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology, 58, 99–117.

    Article  CAS  PubMed  Google Scholar 

  • Chang, S.-C. (1952). The speed of toxic action on the pea aphid of several insecticides. Journal of Economic Entomology, 45, 370–372.

    Article  CAS  Google Scholar 

  • Clinch, P., & Ross, J. (1970). Laboratory assessment of the speed of action on honey bees of orally dosed insecticides. New Zealand Journal of Agricultural Research, 13, 717–725.

    Article  CAS  Google Scholar 

  • Cory, J. S., Hirst, M. L., Williams, T., Hails, R. S., Goulson, D., Green, B. M., Carty, T. M., Possee, R. D., Cayley, P. J., & Bishop, D. H. L. (1994). Field trial of a genetically improved baculovirus insecticide. Nature, 370, 138–140.

    Article  Google Scholar 

  • Crump, A., & Omura, S. (2011). Ivermectin,“Wonder drug” from Japan: the human use perspective. Proceedings of the Japan Academy, 87, 13–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferro, D., Logan, J., Voss, R., & Elkinton, J. (1985). Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environmental Entomology, 14, 343–348.

    Article  Google Scholar 

  • Franc, M., & Bouhsira, E. (2009). Evaluation of speed and duration of efficacy of spinosad tablets for treatment and control of Ctenocephalides canis (Siphonaptera: Pulicidae) infestations in dogs. Parasite, 16, 125–128.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, L. C., Wang, C. C., & Gorio, A. (1979). Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proceedings of the National Academy of Sciences, 76, 2062.

    Article  CAS  Google Scholar 

  • Gouamene-Lamine, C. N., Sup Yoon, K., & Marshall Clark, J. (2003). Differential susceptibility to abamectin and two bioactive avermectin analogs in abamectin-resistant and-susceptible strains of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pesticide Biochemistry and Physiology, 76, 15–23.

    Article  CAS  Google Scholar 

  • Hainzl, D., & Casida, J. E. (1996). Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 93, 12764–12767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannig, G. T., Ziegler, M., & Marçon, P. G. (2009). Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode‐of‐action groups. Pest Management Science, 65, 969–974.

    Article  CAS  PubMed  Google Scholar 

  • Inceoglu, A. B., Kamita, S. G., & Hammock, B. D. (2006). Genetically modified baculoviruses: a historical overview and future outlook. Advances in Virus Research, 68, 323–360.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Wang, Z., Xiong, M., Lu, W., Liu, P., Guo, W., & Li, G. (2010). Insecticide resistance status of Colorado potato beetle (Coleoptera: Chrysomelidae) adults in northern Xinjiang Uygur autonomous region. Journal of Economic Entomology, 103, 1365–1371.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W.-H., Guo, W.-C., Lu, W.-P., Shi, X.-Q., Xiong, M.-H., & Li, G.-Q. (2011). Target site insensitivity mutations in the AChE and LdVssc1 confer resistance 3 to pyrethroids and carbamates in Leptinotarsa decemlineata in northern 4 Xinjiang Uygur autonomous region. Pesticide Biochemistry and Physiology, 100, 74–81.

    Article  CAS  Google Scholar 

  • Jiang, W.-H., Lu, W.-P., Guo, W.-C., Xia, Z.-H., Fu, W.-J., & Li, G.-Q. (2012). Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the north Xinjiang Uygur autonomous region in China. Journal of Economic Entomology, 105, 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Kass, I., Wang, C., Walrond, J., & Stretton, A. (1980). Avermectin B1a, a paralyzing anthelmintic that affects interneurons and inhibitory motoneurons in Ascaris. Proceedings of the National Academy of Sciences, 77, 6211–6215.

    Article  CAS  Google Scholar 

  • Kirst, H. A. (2010). The spinosyn family of insecticides: realizing the potential of natural products research. The Journal of Antibiotics, 63, 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Kopanic, R. J. J., & Schal, C. (1997). Relative significance of direct ingestion and adult-mediated translocation of bait to German cockroach nymphs (Dictyoptera: Blattellidae). Journal of Economic Entomology, 90, 1073–1079.

    Article  Google Scholar 

  • Kopanic, R. J. J., & Schal, C. (1999). Coprophagy facilitates horizontal transmission of bait among cockroaches (Dictyoptera: Blattellidae). Environmental Eotomology, 28, 431–438.

    Article  Google Scholar 

  • Li, S.-Y., Liu, X., Gao, C.-F., Bo, X.-P., Su, J.-Y., Wang, Y.-H., Yu, L., Yan, X., Shen, J.-L., Yang, J., & Tao, L.-M. (2009). Laboratory screening of alternatives to highly toxic insecticides for controlling the white backed plant hopper, Sogatella furcifera and resistance risk assessment to imidacloprid in rice. Chinese Journal of Rice Science, 23, 79–84.

    Article  CAS  Google Scholar 

  • Liu, S., Niu, H., Xiao, T., Xue, C., Liu, Z., & Luo, W. (2009). Does phenoloxidase contributed to the resistance? Selection with butane-fipronil enhanced its activities from diamondback moths. The Open Biochemistry Journal, 3, 9–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, W.-P., Shi, X.-Q., Guo, W.-C., Jiang, W.-H., Xia, Z.-H., Fu, W.-J., & Li, G.-Q. (2011). Susceptibilities of Leptinotarsa decemlineata (Say) in the north xinjiang Uygur autonomous region in China to two biopesticides and three conventional insecticides. Journal of Agricultural and Urban Entomology, 27, 61–73.

    Article  CAS  Google Scholar 

  • Malekmohammadi, M., Hejazi, M., Mossadegh, M., Galehdari, H., Khanjani, M., & Goodarzi, M. (2012). Molecular diagnostic for detecting the acetylcholinesterase mutations in insecticide-resistant populations of Colorado potato beetle, Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology, 104, 150–156.

    Article  CAS  Google Scholar 

  • Mertz, H., & Yao, R. C. (1990). Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. International Journal of Systematic Bacteriology, 40, 34–39.

    Article  Google Scholar 

  • Mohamadi, M., Mossadegh, M., Hejazi, M., Goodarzi, M., Khanjani, M., & Galehdari, H. (2010). Synergism of resistance to phosalone and comparison of kinetic properties of acetylcholinesterase from four field populations and a susceptible strain of Colorado potato beetle. Pesticide Biochemistry and Physiology, 9, 254–262.

    Article  Google Scholar 

  • Moreno, Y., Nabhan, J. F., Solomon, J., Mackenzie, C. D., & Geary, T. G. (2010). Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proceedings of the National Academy of Sciences, 107, 20120–20125.

    Article  CAS  Google Scholar 

  • Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44, 257–289.

    Article  CAS  PubMed  Google Scholar 

  • Niu, H.-T., Yan, L., Zong, J.-P., Wei, S.-J., & Luo, W.-C. (2007a). A comparison on toxicity of fipronil and butene-fipronil against diamondback moth larvae in laboratory. Agrochemicals Research and Application, 11, 28–30.

    Google Scholar 

  • Niu, H.-T., Zong, J.-P., Wang, H.-Y., Wei, S.-J., Zhu, X.-F., & Luo, W.-C. (2007b). Resistance selection of Plutella xylostella to butene-fipronil and its growth fitness. Chinese Journal of Pesticide Science, 9, 245–250.

    CAS  Google Scholar 

  • Niu, H. T., Luo, W. C., Jiang, G. Q., & Zhu, X. F. (2007c). Bioactivity of butene-fipronil and its field efficacy against diamondback moth, Plutella xylostella (L.). Acta Phytophylacica Sinica, 34, 316–320.

    CAS  Google Scholar 

  • Niu, H.-T., Luo, W.-C., Zong, J.-P., Wei, S.-J., Wang, H.-Y., & Pan, Z.-X. (2008). Realized heritability of resistance to butene-fipronil in diamondback moth, Plutella xylostella. Acta Phytophylacica Sinica, 35, 165–168.

    Google Scholar 

  • Rinkevich, F. D., Su, C., Lazo, T., Hawthorne, D., Tingey, W., Naimov, S., & Scott, J. G. (2012). Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle, Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology, 104, 192–200.

    Article  CAS  Google Scholar 

  • Shi, X.-Q., Xiong, M.-H., Jiang, W.-H., Wang, Z.-T., Guo, W.-C., Xia, Z.-H., Fu, W.-J., & Li, G.-Q. (2012). Efficacy of endosulfan and fipronil and joint toxic action of endosulfan mixtures against Leptinotarsa decemlineata (Say). Journal of Pest Science, 85, 519–526.

    Article  Google Scholar 

  • Shi, X.-Q., Guo, W.-C., Wan, P.-J., Zhou, L.-T., Ren, X.-L., Tursun, A., Fu, K.-Y., & Li, G.-Q. (2013). Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say). BMC Research Notes, 6, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman, J., Vitale, G. I., & Shapas, T. J. (1991). Hydramethylnon uptake by Blattella germanica (Orthoptera: Blattellidae) by coprophagy. Journal of Economic Entomology, 84, 176–180.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, L. M. D., Hirst, M., Ferber, M. L., Merryweather, A. T., Cayley, P. J., & Possee, R. D. (1991). Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature, 352, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Su, N.-Y. (1994). Field evaluation of a hexaflumuron bait for population suppression of subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 389–397.

    Article  Google Scholar 

  • Su, N.-Y., & Scheffrahn, R. H. (1991). Laboratory evaluation of two slow-acting toxicants against Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 84, 170–175.

    Article  CAS  Google Scholar 

  • Su, N.-Y., Tamashiro, M., Yates, J. R., & Haverty, M. I. (1982). Effect of behavior on the evaluation of insecticides for prevention of or remedial control of the Formosan subterranean termite. Journal of Economic Entomology, 75, 188–193.

    Article  CAS  Google Scholar 

  • Su, N.-Y., Tamashiro, M., & Haverty, M. I. (1987). Characterization of slow-acting insecticides for the remedial control of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 80, 1–4.

    Article  CAS  Google Scholar 

  • Su, N.-Y., Paul, B. M., & Schffrahn, R. H. (1991). Suppression of foraging populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) by field applications of a slow-acting toxicant bait. Journal of Economic Entomology, 84, 1525–1531.

    Article  Google Scholar 

  • Su, N.-Y., Tokoro, M., & Scheffrahn, R. H. (1994). Estimating oral toxicity of slow-acting toxicants against subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 398–401.

    Article  CAS  Google Scholar 

  • Sun, X. L., Wang, H. L., Sun, X. C., Chen, X. W., Peng, C. M., Pan, D. M., Jehle, J. A., Van Derwerf, W., Vlak, J. M., & Hua, Z. (2004). Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopoly hedrovirus expressing an insect-selective toxin from a chimeric promoter. Biological Control, 29, 124–137.

    Article  Google Scholar 

  • Szendrei, Z., Grafius, E., Byrne, A., & Ziegler, A. (2012). Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Management Science, 68, 941–946.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, G. D., Dutton, R., & Sparks, T. C. (2000). Spinosad-a case study: an example from a natural products discovery programme. Pest Management Science, 56, 696–702.

    Article  CAS  Google Scholar 

  • Wang, S.-P., Hu, X.-X., Meng, Q.-W., Muhammad, S. A., Chen, R.-R., Li, F., & Li, G.-Q. (2013). The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 166, 7–14.

    Article  CAS  Google Scholar 

  • Wolstenholme, A., & Rogers, A. (2005). Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology, 131, S85–S95.

    Article  CAS  PubMed  Google Scholar 

  • Yeoh, B.-H., & Lee, C.-Y. (2007). Tunneling responses of the Asian subterranean termite, Coptotermes gestroi in termiticide-treated sand (Isoptera: Rhinotermitidae). Sociobiology, 50, 457–468.

    Google Scholar 

  • Yuan, Z.-J., Wang, X.-T., Hao, X.-M., Lai, Z.-W., & Deng, X.-P. (2009). Formulation development of butene-fipronil 20% WG. Agrochemicals Research and Application, 13, 14–17.

    Google Scholar 

  • Zhao, X., & Salgado, V. L. (2010). The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pesticide Biochemistry and Physiology, 97, 153–160.

    Article  CAS  Google Scholar 

  • Zichová, T., Kocourek, F., Salava, J., Nad’ová, K., & Stará, J. (2010). Detection of organophosphate and pyrethroid resistance alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) populations by molecular methods. Pest Management Science, 66, 853–860.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Basic Research Program of China (973 Program, No. 2010CB126200), the National Natural Sciences Foundation of China (31272047 and 31360442) and a nationally special fund of China for agri-scientific research in the public interest (201103026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Shahid Arain or Muhammad Shakeel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arain, M.S., Wan, PJ., Shakeel, M. et al. Toxicity of butene-fipronil, in comparison with seven other insecticides, in Leptinotarsa decemlineata and Drosophila melanogaster . Phytoparasitica 45, 103–111 (2017). https://doi.org/10.1007/s12600-016-0560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0560-z

Keywords

Navigation