Skip to main content
Log in

Anisotropy of two-dimensional ReS2 and advances in its device application

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted growing interest regarding their potential applications in next-generation electronic and optoelectronic devices. Owing to their atomic thickness and tunable bandgap, they exhibit unique mechanical, electrical, and optical properties. As a specific member of the TMDC family, rhenium disulfide (ReS2) has stimulated intensive interest due to its anisotropic crystal structure, weak inter-layer coupling, and anisotropic electrical and optical properties. In this review, we summarize the distinct crystal structure and intrinsic anisotropic properties of ReS2, followed by an introduction to its synthesis methods. The current applications of ReS2 and its heterojunctions are presented based on its anisotropic properties. This review not only provides a timely summary of the current applications of ReS2 and its heterojunctions, but also inspires new approaches to develop other innovative devices based on 2D materials with a low lattice symmetry.

Graphical abstract

摘要

二维过渡金属硫族化合物(TMDCs)因其在下一代电子器件和光电器件中的潜在应用引起了人们越来越多的关注。二维TMDCs材料具有原子级厚度、红外及可见光范围内的可调带隙, 表现出独特的机械、电学和光学特性。作为TMDCs家族中的一员, 二硫化铼(ReS2)由于其各向异性的晶体结构、弱层间耦合作用, 以及各向异性的电学和光学特性, 引起了人们的高度关注。本文综述了ReS2各向异性晶体结构和本征物理性质, 介绍了其主要的合成方法。并基于ReS2的各向异性特性, 概述了ReS2及其异质结在电子器件、光电器件、逻辑器件和储能器件方面的应用。本综述不仅总结了ReS2及其异质结器件研究现状, 也为设计研制基于低晶格对称性二维材料的新型器件提供了新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Copyright 2018 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Copyright 2014 Nature Publishing Group, a division of Macmillan Publishers Limited

Fig. 4

Copyright Clearance Center, Inc. d Configuration of angle-resolved polarization Raman measurement and (inset) top view of crystal structure of ReS2; e Raman spectra of ReS2 at different rotation angles under a laser of 514.5 nm. Reprinted with permission from Ref. [58]. Copyright 2017 American Chemical Society. f Angle-resolved Raman intensities for mode III and V of 4L ReS2 shown in a polar plot. Reprinted with permission from Ref. [59]. Copyright 2015 American Chemical Society

Fig. 5

Copyright 2017 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 6

Copyright 2016 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 7

Copyright 2015 Natural Publishing Group

Fig. 8

Copyright 2016 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 9

Copyright 2019 American Chemical Society. d Schematic illustration of vertical BP/ReS2 heterojunction device; e current rectification ratio as a function of back-gate voltage (Vg) and (inset) diode ideal factor as a function of Vg under a forward bias (factor of 1.0 indicates a good interface quality in BP/ReS2 heterojunction); f photoresponsivity as a function of back-gate voltage with increased LBP values under an illuminated power density of 0.55 mW·cm−2. Reprinted with permission from Ref. [90]. Copyright Clearance Center, Inc. g Schematic of lateral ReS2/ReSe2 heterojunction device using linearly polarized light as excitation source; h transfer curves (IdsVg) of individual ReSe2 and ReS2 domain in FETs and (inset) IdsVds curves for individual ReSe2 and ReS2 domain; i transport curves (IdsVds) of ReS2/ReSe2 heterojunction device with various polarization angles (λ = 532 nm; power: 50 nW), where light polarization directions relative to b-axis of heterojunction (as indicated by blue dashed arrow in inset) are 0°, 45° and 90°, respectively, and inset shows an optical image of heterojunction device. Reprinted with permission from Ref. [92]. Copyright 2018 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Similar content being viewed by others

References

  1. Xie HC, Jiang SW, Shan J, Mak KF. Valley-selective exciton bistability in a suspended monolayer semiconductor. Nano Lett. 2018;18(5):3213.

    Article  CAS  Google Scholar 

  2. Zhang WD, Dong XA, Liang Y, Liu R, Sun YJ, Dong F. Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Met. 2019;38(5):437.

    Article  CAS  Google Scholar 

  3. Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol. 2012;7(8):494.

    Article  CAS  Google Scholar 

  4. Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH, Eda G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano. 2013;7(1):791.

    Article  CAS  Google Scholar 

  5. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.

    Article  CAS  Google Scholar 

  6. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105(13):136805.

    Article  CAS  Google Scholar 

  7. Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Phys B. 2011;406(11):2254.

    Article  CAS  Google Scholar 

  8. Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res. 2015;48(1):56.

    Article  CAS  Google Scholar 

  9. Zhang X, Zhao HB, Zhang QZ, Wei F. Controllable growth and morphology evolution of 2D MoS2 via CVD method. Chin J Rare Met. 2020;44(12):1249.

    Google Scholar 

  10. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183.

    Article  CAS  Google Scholar 

  11. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today. 2017;20(3):116.

    Article  CAS  Google Scholar 

  12. Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res. 2014;47(4):1067.

    Article  CAS  Google Scholar 

  13. Zhao S, Dong B, Wang H, Wang H, Zhang Y, Han ZV, Zhang H. In-plane anisotropic electronics based on low-symmetry 2D materials: progress and prospects. Nanoscale Advances. 2020;2(1):109.

    Article  Google Scholar 

  14. Ling X, Wang H, Huang S, Xia F, Dresselhaus MS. The renaissance of black phosphorus. Proc Natl Acad Sci USA. 2015;112(15):4523.

    Article  CAS  Google Scholar 

  15. Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun. 2014;5(1):4458.

    Article  CAS  Google Scholar 

  16. Qiao J, Kong X, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun. 2014;5:4475.

    Article  CAS  Google Scholar 

  17. Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang YW, Yu Z, Zhang G, Qin Q, Lu Y. Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene. ACS Nano. 2014;8(9):9590.

    Article  CAS  Google Scholar 

  18. Wei Q, Peng X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl Phys Lett. 2014;104(25):251915.

    Article  CAS  Google Scholar 

  19. Wang Z, Jia H, Zheng XQ, Yang R, Ye GJ, Chen XH, Feng PX. Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy. Nano Lett. 2016;16(9):5394.

    Article  CAS  Google Scholar 

  20. Wang X, Jones AM, Seyler KL, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol. 2015;10(6):517.

    Article  CAS  Google Scholar 

  21. Castellanos-Gomez A. Black phosphorus: narrow gap, wide applications. J Phys Chem Lett. 2015;6(21):4280.

    Article  CAS  Google Scholar 

  22. Nam GH, He Q, Wang X, Yu Y, Chen J, Zhang K, Yang Z, Hu D, Lai Z, Li B, Xiong Q, Zhang Q, Gu L, Zhang H. In-plane anisotropic properties of 1T′-MoS2 layers. Adv Mater. 2019;31(21):1807764.

    Article  CAS  Google Scholar 

  23. Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P, Wang H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015;8(11):3651.

    Article  CAS  Google Scholar 

  24. Wolverson D, Crampin S, Kazemi AS, Ilie A, Bending SJ. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano. 2014;8(11):11154.

    Article  CAS  Google Scholar 

  25. Hart L, Dale S, Hoye S, Webb JL, Wolverson D. Rhenium dichalcogenides: layered semiconductors with two vertical orientations. Nano Lett. 2016;16(2):1381.

    Article  CAS  Google Scholar 

  26. Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang YS, Ho CH, Yan J, Ogletree DF, Aloni S, Ji J, Li S, Li J, Peeters FM, Wu J. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun. 2014;5:3252.

    Article  CAS  Google Scholar 

  27. Liu E, Fu Y, Wang Y, Feng Y, Liu H, Wan X, Zhou W, Wang B, Shao L, Ho CH, Huang YS, Cao Z, Wang L, Li A, Zeng J, Song F, Wang X, Shi Y, Yuan H, Hwang HY, Cui Y, Miao F, Xing D. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat Commun. 2015;6:6991.

    Article  CAS  Google Scholar 

  28. Wang R, Yu Y, Zhou S, Li H, Wong H, Luo Z, Gan L, Zhai T. Strategies on phase control in transition metal dichalcogenides. Adv Func Mater. 2018;28(47):1802473.

    Article  CAS  Google Scholar 

  29. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263.

    Article  Google Scholar 

  30. Shi J, Yu P, Liu F, He P, Wang R, Qin L, Zhou J, Li X, Zhou J, Sui X, Zhang S, Zhang Y, Zhang Q, Sum TC, Qiu X, Liu Z, Liu X. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Adv Mater. 2017;29(30):1701486.

    Article  CAS  Google Scholar 

  31. Qi Y, Naumov PG, Ali MN, Rajamathi CR, Schnelle W, Barkalov O, Hanfland M, Wu SC, Shekhar C, Sun Y, Suss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Forster T, Kampert E, Parkin S, Cava RJ, Felser C, Yan B, Medvedev SA. Superconductivity in Weyl semimetal candidate MoTe2. Nat Commun. 2016;7:11038.

    Article  CAS  Google Scholar 

  32. Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev. 2015;44(9):2702.

    Article  CAS  Google Scholar 

  33. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano. 2010;4(5):2695.

    Article  CAS  Google Scholar 

  34. Yu ZG, Cai Y, Zhang YW. Robust direct bandgap characteristics of one- and two-dimensional ReS2. Sci Rep. 2015;5(1):13783.

    Article  Google Scholar 

  35. Feng Y, Zhou W, Wang Y, Zhou J, Liu E, Fu Y, Ni Z, Wu X, Yuan H, Miao F, Wang B, Wan X, Xing D. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys Rev B, 2015; 92(5):054110.

    Article  CAS  Google Scholar 

  36. Xiong Y, Chen HW, Zhang DW, Zhou P. Electronic and optoelectronic applications based on ReS2. Phys Status Solidi Rapid Res Lett. 2019;13(6):1800658.

    Article  CAS  Google Scholar 

  37. Yun WS, Han S, Hong SC, Kim IG, Lee J. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te). Phys Rev B. 2012;85(3):033305.

    Article  CAS  Google Scholar 

  38. Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B. 2011;83(24):245213.

    Article  CAS  Google Scholar 

  39. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010;10(4):1271.

    Article  CAS  Google Scholar 

  40. Park JY, Joe HE, Yoon HS, Yoo S, Kim T, Kang K, Min BK, Jun SC. Contact effect of ReS2/metal interface. ACS Appl Mater Interfaces. 2017;9(31):26325.

    Article  CAS  Google Scholar 

  41. Aslan OB, Chenet DA, van der Zande AM, Hone JC, Heinz TF. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics. 2015;3(1):96.

    Article  CAS  Google Scholar 

  42. Zhang E, Jin Y, Yuan X, Wang W, Zhang C, Tang L, Liu S, Zhou P, Hu W, Xiu F. ReS2-based field-effect transistors and photodetectors. Adv Func Mater. 2015;25(26):4076.

    Article  CAS  Google Scholar 

  43. Cui Q, He J, Bellus MZ, Mirzokarimov M, Hofmann T, Chiu HY, Antonik M, He D, Wang Y, Zhao H. Transient absorption measurements on anisotropic monolayer ReS2. Small. 2015;11(41):5565.

    Article  CAS  Google Scholar 

  44. Wang YY, Zhou JD, Jiang J, Yin TT, Yin ZX, Liu Z, Shen ZX. In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy. Nanoscale. 2019;11(42):20199.

    Article  CAS  Google Scholar 

  45. Zhang X, Qiao XF, Shi W, Wu JB, Jiang DS, Tan PH. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev. 2015;44(9):2757.

    Article  CAS  Google Scholar 

  46. Nagler P, Plechinger G, Schüller C, Korn T. Observation of anisotropic interlayer Raman modes in few-layer ReS2, physica status solidi. RRL Rapid Res Lett. 2016;10(2):185.

    CAS  Google Scholar 

  47. Lorchat E, Froehlicher G, Berciaud S. Splitting of interlayer shear modes and photon energy dependent anisotropic raman response in N-layer ReSe2 and ReS2. ACS Nano. 2016;10(2):2752.

    Article  CAS  Google Scholar 

  48. He R, Yan JA, Yin Z, Ye Z, Ye G, Cheng J, Li J, Lui CH. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency raman spectroscopy. Nano Lett. 2016;16(2):1404.

    Article  CAS  Google Scholar 

  49. Liang L, Zhang J, Sumpter BG, Tan QH, Tan PH, Meunier V. Low-frequency shear and layer-breathing modes in raman scattering of two-dimensional materials. ACS Nano. 2017;11(12):11777.

    Article  CAS  Google Scholar 

  50. Zhao Y, Luo X, Li H, Zhang J, Araujo PT, Gan CK, Wu J, Zhang H, Quek SY, Dresselhaus MS, Xiong Q. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013;13(3):1007.

    Article  CAS  Google Scholar 

  51. Zhang X, Han WP, Wu JB, Milana S, Lu Y, Li QQ, Ferrari AC, Tan PH. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B. 2013;87(11):115413.

    Article  CAS  Google Scholar 

  52. Boukhicha M, Calandra M, Measson MA, Lancry O, Shukla A. Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes. Phys Rev B. 2013;87(19):195316.

    Article  CAS  Google Scholar 

  53. Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235.

    Article  CAS  Google Scholar 

  54. Ling X, Huang S, Hasdeo EH, Liang L, Parkin WM, Tatsumi Y, Nugraha ART, Puretzky AA, Das PM, Sumpter BG, Geohegan DB, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus MS. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016;16(4):2260.

    Article  CAS  Google Scholar 

  55. Ribeiro HB, Pimenta MA, de Matos CJS, Moreira RL, Rodin AS, Zapata JD, de Souza EAT, CastroNeto AH. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano. 2015;9(4):4270.

    Article  CAS  Google Scholar 

  56. Song Q, Pan X, Wang H, Zhang K, Tan Q, Li P, Wan Y, Wang Y, Xu X, Lin M, Wan X, Song F, Dai L. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci Rep. 2016;6(1):29254.

    Article  Google Scholar 

  57. Tian Z, Guo C, Zhao M, Li R, Xue J. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano. 2017;11(2):2219.

    Article  CAS  Google Scholar 

  58. Zhang S, Mao N, Zhang N, Wu J, Tong L, Zhang J. Anomalous polarized Raman scattering and large circular intensity differential in layered triclinic ReS2. ACS Nano. 2017;11(10):10366.

    Article  CAS  Google Scholar 

  59. Chenet DA, Aslan OB, Huang PY, Fan C, van der Zande AM, Heinz TF, Hone JC. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015;15(9):5667.

    Article  CAS  Google Scholar 

  60. Jang H, Ryder CR, Wood JD, Hersam MC, Cahill DG. 3D anisotropic thermal conductivity of exfoliated rhenium disulfide. Adv Mater. 2017;29(35):1700650.

    Article  CAS  Google Scholar 

  61. Jariwala B, Voiry D, Jindal A, Chalke BA, Bapat R, Thamizhavel A, Chhowalla M, Deshmukh M, Bhattacharya A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem Mater. 2016;28(10):3352.

    Article  CAS  Google Scholar 

  62. Rahman M, Davey K, Qiao SZ. Advent of 2D rhenium disulfide (ReS2): fundamentals to applications. Adv Func Mater. 2017;27(10):1606129.

    Article  CAS  Google Scholar 

  63. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568.

    Article  CAS  Google Scholar 

  64. Fujita T, Ito Y, Tan Y, Yamaguchi H, Hojo D, Hirata A, Voiry D, Chhowalla M, Chen M. Chemically exfoliated ReS2 nanosheets. Nanoscale. 2014;6(21):12458.

    Article  CAS  Google Scholar 

  65. Coleman JN. Liquid exfoliation of defect-free graphene. Acc Chem Res. 2013;46(1):14.

    Article  CAS  Google Scholar 

  66. Qi F, Chen Y, Zheng B, Zhou J, Wang X, Li P, Zhang W. Facile growth of large-area and high-quality few-layer ReS2 by physical vapour deposition. Mater Lett. 2016;184:324.

    Article  CAS  Google Scholar 

  67. He X, Liu F, Hu P, Fu W, Wang X, Zeng Q, Zhao W, Liu Z. Chemical vapor deposition of high-quality and atomically layered ReS2. Small. 2015;11(40):5423.

    Article  CAS  Google Scholar 

  68. Keyshar K, Gong Y, Ye G, Brunetto G, Zhou W, Cole DP, Hackenberg K, He Y, Machado L, Kabbani M, Hart AH, Li B, Galvao DS, George A, Vajtai R, Tiwary CS, Ajayan PM. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv Mater. 2015;27(31):4640.

    Article  CAS  Google Scholar 

  69. Cui F, Wang C, Li X, Wang G, Liu K, Yang Z, Feng Q, Liang X, Zhang Z, Liu S, Lei Z, Liu Z, Xu H, Zhang J. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv Mater. 2016;28(25):5019.

    Article  CAS  Google Scholar 

  70. Kim Y, Kang B, Choi Y, Cho JH, Lee C. Direct synthesis of large-area continuous ReS2 films on a flexible glass at low temperature. 2D Mater. 2017;4(2):025057.

  71. He Q, Zhou J, Tang W, Hao Y, Sun L, Zhu C, Xu F, Chen J, Wu Y, Wu Z, Xu B, Liu G, Li X, Zhang C, Kang J. Deeply exploring anisotropic evolution toward large-scale growth of monolayer ReS2. ACS Appl Mater Interfaces. 2020;12(2):2862.

    Article  CAS  Google Scholar 

  72. Li X, Wang X, Hong J, Liu D, Feng Q, Lei Z, Liu K, Ding F, Xu H. Nanoassembly growth model for subdomain and grain boundary formation in 1T′ layered ReS2. Adv Func Mater. 2019;29(49):1906385.

    Article  CAS  Google Scholar 

  73. Qi F, He J, Chen Y, Zheng B, Li Q, Wang X, Yu B, Lin J, Zhou J, Li P, Zhang W, Li Y. Few-layered ReS2 nanosheets grown on carbon nanotubes: a highly efficient anode for high-performance lithium-ion batteries. Chem Eng J. 2017;315:10.

    Article  CAS  Google Scholar 

  74. Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.

    Article  CAS  Google Scholar 

  75. Wang H, Jiang X, Yang X, Yu Z, Yuan R. Fluffy carbon-coated ReS2 nanoflowers as enhanced anode materials for lithium ion battery. Mater Chem Phys. 2019;232:506.

    Article  CAS  Google Scholar 

  76. Pang QQ, Niu ZL, Yi SS, Zhang S, Liu ZY, Yue XZ, Hydrogen-etched bifunctional sulfur-defect-rich ReS2/CC electrocatalyst for highly efficient HER and OER. Small. 2020;16(34):2003007.

    Article  CAS  Google Scholar 

  77. Xie X, Mao M, Qi S, Ma J. ReS2-based electrode materials for alkali-metal ion batteries. CrystEngComm. 2019;21(25):3755.

    Article  CAS  Google Scholar 

  78. Liu S, Liu Y, Lei W, Zhou X, Xu K, Qiao Q, Zhang WH. Few-layered ReS2 nanosheets vertically aligned on reduced graphene oxide for superior lithium and sodium storage. J Mater Chem A. 2018;6(41):20267.

    Article  CAS  Google Scholar 

  79. Wu M, Yang J, Ng DHL, Ma J. Rhenium diselenide anchored on reduced graphene oxide as anode with cyclic stability for potassium-ion battery, physica status solidi. RRL Rapid Res Lett. 2019;13(10):1900329.

    CAS  Google Scholar 

  80. Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Func Mater. 2018;29(19):1803807.

    Article  CAS  Google Scholar 

  81. Liu F, Zheng S, He X, Chaturvedi A, He J, Chow WL, Mion TR, Wang X, Zhou J, Fu Q, Fan HJ, Tay BK, Song L, He RH, Kloc C, Ajayan PM, Liu Z. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv Func Mater. 2016;26(8):1169.

    Article  CAS  Google Scholar 

  82. Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv Sci (Weinh). 2017;4(12):1700231.

    Article  CAS  Google Scholar 

  83. Zhao J, Ma D, Wang C, Guo Z, Zhang B, Li J, Nie G, Xie N, Zhang H. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 2020;14(4):897.

    Article  CAS  Google Scholar 

  84. Yu WJ, Li Z, Zhou H, Chen Y, Wang Y, Huang Y, Duan X. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater. 2013;12(3):246.

    Article  CAS  Google Scholar 

  85. Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol. 2013;8(12):952.

    Article  CAS  Google Scholar 

  86. Liu Y, Huang Y, Duan X, Vander D. Waals integration before and beyond two-dimensional materials. Nature. 2019;567(7748):323.

    Article  CAS  Google Scholar 

  87. Wang FK, Zhai TY. Towards scalable van der Waals heterostructure arrays. Rare Met. 2020;39(4):327.

    Article  CAS  Google Scholar 

  88. Mukherjee B, Zulkefli A, Hayakawa R, Wakayama Y, Nakaharai S. Enhanced quantum efficiency in vertical mixed-thickness n-ReS2/p-Si heterojunction photodiodes. ACS Photonics. 2019;6(9):2277.

    Article  CAS  Google Scholar 

  89. Kang B, Kim Y, Yoo WJ, Lee C. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small. 2018;14(45):1802593.

    Article  CAS  Google Scholar 

  90. Cao S, Xing Y, Han J, Luo X, Lv W, Lv W, Zhang B, Zeng Z. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale. 2018;10(35):16805.

    Article  CAS  Google Scholar 

  91. Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016;9(12):3772.

    Article  CAS  Google Scholar 

  92. Liu DY, Hong JH, Wang X, Li XB, Feng QL, Tan CW, Zhai TY, Ding F, Peng HL, Xu H. Diverse atomically sharp interfaces and linear dichroism of 1T′ ReS2-ReSe2 lateral p-n heterojunctions. Adv Func Mater. 2018;28(47):1804696.

    Article  CAS  Google Scholar 

  93. Yan R, Fathipour S, Han Y, Song B, Xiao S, Li M, Ma N, Protasenko V, Muller DA, Jena D, Xing HG. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 2015;15(9):5791.

    Article  CAS  Google Scholar 

  94. Roy T, Tosun M, Cao X, Fang H, Lien DH, Zhao P, Chen YZ, Chueh YL, Guo J, Javey A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano. 2015;9(2):2071.

    Article  CAS  Google Scholar 

  95. Nourbakhsh A, Zubair A, Dresselhaus MS, Palacios T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 2016;16(2):1359.

    Article  CAS  Google Scholar 

  96. Shim J, Oh S, Kang DH, Jo SH, Ali MH, Choi WY, Heo K, Jeon J, Lee S, Kim M, Song YJ, Park JH. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun. 2016;7:13413.

    Article  CAS  Google Scholar 

  97. Xiong X, Kang J, Hu Q, Gu C, Gao T, Li X, Wu Y. Reconfigurable logic-in-memory and multilingual artificial synapses based on 2d heterostructures. Adv Func Mater. 2020;30(11):1909645.

    Article  CAS  Google Scholar 

  98. Zhang Q, Tan S, Mendes RG, Sun Z, Chen Y, Kong X, Xue Y, Rümmeli MH, Wu X, Chen S, Fu L. Extremely weak van der Waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. 2016;28(13):2616.

  99. Mao ML, Cui CY, Wu MG, Zhang M, Gao T, Fan XL, Chen J, Wang TH, Ma JM, Wang CS. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy. 2018;45:346.

    Article  CAS  Google Scholar 

  100. Zhao J, Zhu J, Cao R, Wang H, Guo Z, Sang DK, Tang J, Fan D, Li J, Zhang H. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat Commun. 2019;10(1):4062.

    Article  CAS  Google Scholar 

  101. Shim J, Oh A, Kang DH, Oh S, Jang SK, Jeon J, Jeon MH, Kim M, Choi C, Lee J, Lee S, Yeom GY, Song YJ, Park JH. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment, 2016;28(32):6985.

  102. Yu Z, Pan Y, Shen Y, Wang Z, Ong ZY, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang YW, Shi Y, Wang X. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun. 2014;5:5290.

    Article  CAS  Google Scholar 

  103. Gao N, Zhou S, Liu N, Bai Y, Zhao J. Selecting electrode materials for monolayer ReS2 with an Ohmic contact. J Mater Chem C. 2018;6(25):6764.

    Article  CAS  Google Scholar 

  104. Sun YH, Wang RM, Liu K. Substrate induced changes in atomically thin 2-dimensional semiconductors: fundamentals, engineering, and applications. Appl Phys Rev. 2017;4(1):011301.

    Article  CAS  Google Scholar 

  105. Nazir G, Rehman MA, Khan MF, Dastgeer G, Aftab S, Afzal AM, Seo Y, Eom J. Comparison of electrical and photoelectrical properties of ReS2 field-effect transistors on different dielectric substrates. ACS Appl Mater Interfaces. 2018;10(38):32501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11974041 and 12034002) and the Fundamental Research Funds for the Central Universities (No. FRF-IDRY-19-007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Hui Sun or Rong-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, YD., Sun, YH., Shi, SF. et al. Anisotropy of two-dimensional ReS2 and advances in its device application. Rare Met. 40, 3357–3374 (2021). https://doi.org/10.1007/s12598-021-01781-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01781-6

Keywords

Navigation