Skip to main content
Log in

An inventory model with preservation technology investments and stock-varying demand under advanced payment scheme

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In traditional EOQ models, retailers pay suppliers the purchase price of an order as soon as it arrives. But in today competitive market, however, suppliers may offer retailers the option to pay all or a portion of the product value in advance in return for specific incentives, such as an immediate price discount and other perks. In this article, an EOQ inventory model for retailers with deteriorating commodities employing preservation technologies and a partially advanced payment method has been established. The product’s demand is in stock dependent. We proved optimality both analytically and visually, and we offered one theorem to demonstrate optimality theoretically. Two numerical examples are offered to prove the validity of present inventory model. We used MATLAB to create 3D graphs to evaluate the numerical results of the suggested model. Finally, we conducted a sensitivity analysis by altering a single parameter while leaving the others unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ghare, P.M., Schrader, G.F.: A model for an exponential decaying inventory. J. Ind. Eng. 14, 238–243 (1963)

    Google Scholar 

  2. Bhunia, A.K., Maiti, M.: An inventory model of deteriorating items with lot-size dependent replenishment cost and a linear trend in demand. Appl. Math. Model. 23, 301–308 (1999)

    Article  Google Scholar 

  3. Liao, H.C., Tsai, C.H., Su, C.T.: Inventory model with deteriorating items under inflation when a delay in payment is permissible. Int. J. Prod. Econ. 63(2), 207–214 (2000). https://doi.org/10.1016/S0925-5273(99)00015-8

    Article  Google Scholar 

  4. Mukhopadhyay, S., Mukherjee, R.N., Chaudhuri, K.S.: An EOQ model with two-parameter Weibull distribution deterioration and price-dependent demand. Int. J. Math. Educ. Sci. Technol. 36(1), 25–33 (2005). https://doi.org/10.1080/00207390412331303487

    Article  MathSciNet  Google Scholar 

  5. Law, S.T., Wee, H.M.: An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting. Math. Comput. Model. 43(5–6), 673–685 (2006). https://doi.org/10.1016/j.mcm.2005.12.012

    Article  Google Scholar 

  6. Deng, P.S., Lin, R.H.J., Chu, P.: A note on the inventory models for deteriorating items with ramp type demand rate. Eur. J. Oper. Res. 178(1), 112–120 (2007). https://doi.org/10.1016/j.ejor.2006.01.028

    Article  MathSciNet  Google Scholar 

  7. Skouri, K., Konstantaras, I., Papachristos, S., Ganas, I.: Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. Eur. J. Oper. Res. 192(1), 79–92 (2009). https://doi.org/10.1016/j.ejor.2007.09.003

    Article  MathSciNet  Google Scholar 

  8. Hung, K.C.: An inventory model with generalized type demand, deterioration and backorder rates. Eur. J. Oper. Res. 208(3), 239–242 (2011). https://doi.org/10.1016/j.ejor.2010.08.026

    Article  MathSciNet  Google Scholar 

  9. Chang, C.T., Teng, J.T., Goyal, S.K.: Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. Int. J. Prod. Econ. 123(1), 62–68 (2010). https://doi.org/10.1016/j.ijpe.2009.06.042

    Article  Google Scholar 

  10. Soni, H.N.: Optimal replenishment policies for non-instantaneous deteriorating items with price and stock sensitive demand under permissible delay in payment. Int. J. Prod. Econ. 146(1), 259–268 (2013). https://doi.org/10.1016/j.ijpe.2013.07.006

    Article  Google Scholar 

  11. Jaggi, C.K., Khanna, A., Verma, P.: Two-warehouse partial backlogging inventory model for deteriorating items with linear trend in demand under inflationary conditions. Int. J. Syst. Sci. 42(7), 1185–1196 (2011). https://doi.org/10.1080/00207720903353674

    Article  MathSciNet  Google Scholar 

  12. Sarkar, B.: An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Model. 55(3–4), 367–377 (2012). https://doi.org/10.1016/j.mcm.2011.08.009

    Article  MathSciNet  Google Scholar 

  13. Balkhi, Z.T., Tadj, L.: A generalized economic order quantity model with deteriorating items and time varying demand, deterioration, and costs. Int. Trans. Oper. Res. 15(4), 509–517 (2008). https://doi.org/10.1111/j.1475-3995.2008.00639.x

    Article  MathSciNet  Google Scholar 

  14. Yang, H.L., Teng, J.T., Chern, M.S.: An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. Int. J. Prod. Econ. 123(1), 8–19 (2010). https://doi.org/10.1016/j.ijpe.2009.06.041

    Article  Google Scholar 

  15. Hong, K.S., Lee, C.: Optimal time-based consolidation policy with price sensitive demand. Int. J. Prod. Econ. 143(2), 275–284 (2013). https://doi.org/10.1016/j.ijpe.2012.06.008

    Article  Google Scholar 

  16. Md Mashud, A.H., Khan, M.A.A., Uddin, M.S., Islam, M.N.: A non-instantaneous inventory model having different deterioration rates with stock and price dependent demand under partially backlogged shortages. Uncertain Supply Chain Manag. 6(1), 49–64 (2018). https://doi.org/10.5267/j.uscm.2017.6.003

    Article  Google Scholar 

  17. Sharma, M.K.: (PDF) An inventory model for deteriorating products with demand appraise by promotional effort. Int. J. Math. Appl. 6(2A), 295–301 (2018)

    Google Scholar 

  18. Sharma, M.K., Srivastava, V.K.: An optimal ordering pharmaceutical inventory model for time varying deteriorating items with ramp type demand. Res. J. Pharm. Technol. (2018). https://doi.org/10.5958/0974-360X.2018.00957.5

    Article  Google Scholar 

  19. Shaikh, A.A., Khan, M.-A., Panda, G.C., Konstantaras, I.: Price discount facility in an EOQ model for deteriorating items with stock-dependent demand and partial backlogging. Int. Trans. Oper. Res. 26(4), 1365–1395 (2019). https://doi.org/10.1111/itor.12632

    Article  MathSciNet  Google Scholar 

  20. Al-Amin Khan, M., Shaikh, A.A., Konstantaras, I., Bhunia, A.K., Cárdenas-Barrón, L.E.: Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price. Int. J. Prod. Econ. (2020). https://doi.org/10.1016/j.ijpe.2020.107804

    Article  Google Scholar 

  21. Cárdenas-Barrón, L.E., Shaikh, A.A., Tiwari, S., Treviño-Garza, G.: An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit. Comput. Ind. Eng. 139, 105557 (2020). https://doi.org/10.1016/j.cie.2018.12.004

    Article  Google Scholar 

  22. Gupta, R.K., Bhunia, A.K., Goyal, S.K.: An application of Genetic Algorithm in solving an inventory model with advance payment and interval valued inventory costs. Math. Comput. Model. 49(5–6), 893–905 (2009). https://doi.org/10.1016/j.mcm.2008.09.015

    Article  MathSciNet  Google Scholar 

  23. Thangam, A.: Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment scheme and two-echelon trade credits. Int. J. Prod. Econ. 139(2), 459–472 (2012). https://doi.org/10.1016/j.ijpe.2012.03.030

    Article  Google Scholar 

  24. Taleizadeh, A.A., Pentico, D.W., Jabalameli, M.S., Aryanezhad, M.: An economic order quantity model with multiple partial prepayments and partial backordering. Math. Comput. Model. 57(3–4), 311–323 (2013). https://doi.org/10.1016/j.mcm.2012.07.002

    Article  MathSciNet  Google Scholar 

  25. Taleizadeh, A.A.: An EOQ model with partial backordering and advance payments for an evaporating item. Int. J. Prod. Econ. 155, 185–193 (2014). https://doi.org/10.1016/j.ijpe.2014.01.023

    Article  Google Scholar 

  26. Giri, B.C., Bhattacharjee, R., Maiti, T.: Optimal payment time in a two-echelon supply chain with price-dependent demand under trade credit financing. Int. J. Syst. Sci.: Oper. Logist. 5(4), 374–392 (2018). https://doi.org/10.1080/23302674.2017.1336263

    Article  Google Scholar 

  27. Pourmohammad Zia, N., Taleizadeh, A.A.: A lot-sizing model with backordering under hybrid linked-to-order multiple advance payments and delayed payment. Transp. Res. E Logist. Transp. Rev. 82, 19–37 (2015). https://doi.org/10.1016/j.tre.2015.07.008

    Article  Google Scholar 

  28. Diabat, A., Taleizadeh, A.A., Lashgari, M.: A lot sizing model with partial downstream delayed payment, partial upstream advance payment, and partial backordering for deteriorating items. J. Manuf. Syst. 45, 322–342 (2017). https://doi.org/10.1016/j.jmsy.2017.04.005

    Article  Google Scholar 

  29. Sadikur Rahman, M., Al-Amin Khan, M., Abdul Halim, M., Nofal, T.A., Akbar Shaikh, A., Mahmoud, E.E.: Hybrid price and stock dependent inventory model for perishable goods with advance payment related discount facilities under preservation technology. Alex. Eng. J. 60(3), 3455–3465 (2021). https://doi.org/10.1016/j.aej.2021.01.045

    Article  Google Scholar 

  30. Bhattacharjee, R., Maiti, T., Giri, B.C.: Manufacturer–retailer supply chain model with payment time-dependent discount factor under two-level trade credit. Int. J. Syst. Sci. Oper. Logist. (2023). https://doi.org/10.1080/23302674.2021.2005842

    Article  Google Scholar 

  31. Khan, M.A.A., Shaikh, A.A., Cárdenas-Barrón, L.E.: An inventory model under linked-to-order hybrid partial advance payment, partial credit policy, all-units discount and partial backlogging with capacity constraint”. Omega (United Kingdom) 103, 102418 (2021). https://doi.org/10.1016/j.omega.2021.102418

    Article  Google Scholar 

  32. Duary, A., et al.: Advance and delay in payments with the price-discount inventory model for deteriorating items under capacity constraint and partially backlogged shortages. Alex. Eng. J. 61(2), 1735–1745 (2022). https://doi.org/10.1016/j.aej.2021.06.070

    Article  Google Scholar 

  33. Alshanbari, H.M., El-Bagoury, A.A.A.H., Khan, M.A.A., Mondal, S., Shaikh, A.A., Rashid, A.: Economic order quantity model with weibull distributed deterioration under a mixed cash and prepayment scheme. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/9588685

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rong, M., Mahapatra, N.K., Maiti, M.: A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time. Eur. J. Oper. Res. 189(1), 59–75 (2008). https://doi.org/10.1016/j.ejor.2007.05.017

    Article  MathSciNet  Google Scholar 

  35. Hsieh, T.P., Dye, C.Y., Ouyang, L.Y.: Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value. Eur. J. Oper. Res. 191(1), 182–192 (2008). https://doi.org/10.1016/j.ejor.2007.08.020

    Article  MathSciNet  Google Scholar 

  36. Molamohamadi, Z., Arshizadeh, R., Ismail, N.: An EPQ inventory model with allowable shortages for deteriorating items under trade credit policy. Discret. Dyn. Nat. Soc. (2014). https://doi.org/10.1155/2014/476085

    Article  MathSciNet  Google Scholar 

  37. Taleizadeh, A.A.: An EOQ model with partial backordering and advance payments for an evaporating item. Int. J. Prod. Econ. 155(2006), 185–193 (2014). https://doi.org/10.1016/j.ijpe.2014.01.023

    Article  Google Scholar 

  38. Singh, S.R., Rathore, H.: A two-warehouse inventory model with preservation technology investment and partial backlogging. Sci. Iran. 23(4), 1952–1958 (2016). https://doi.org/10.24200/sci.2016.3940

    Article  Google Scholar 

  39. Tsao, Y.C.: Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments. Int. J. Syst. Sci. 47(3), 572–585 (2016). https://doi.org/10.1080/00207721.2014.891672

    Article  MathSciNet  Google Scholar 

  40. Shah, N.H., Jani, M.Y., Chaudhari, U.: Optimal replenishment time for retailer under partial upstream prepayment and partial downstream overdue payment for quadratic demand. Math. Comput. Model. Dyn. Syst. 24(1), 1–11 (2018). https://doi.org/10.1080/13873954.2017.1324882

    Article  MathSciNet  CAS  Google Scholar 

  41. Mashud, A.H.M., Roy, D., Daryanto, Y., Chakrabortty, R.K., Tseng, M.L.: A sustainable inventory model with controllable carbon emissions, deterioration and advance payments. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.126608

    Article  Google Scholar 

  42. Ghosh, P.K., Kumar Manna, A., Dey, J.K., Kar, S.: A deteriorating food preservation supply chain model with downstream delayed payment and upstream partial prepayment. RAIRO Oper. Res. 56(1), 331–348 (2022). https://doi.org/10.1051/ro/2021172

    Article  MathSciNet  Google Scholar 

  43. Manna, A.K., Khan, M.A.A., Rahman, M.S., Shaikh, A.A., Bhunia, A.K.: Interval valued demand and prepayment-based inventory model for perishable items via parametric approach of interval and meta-heuristic algorithms. Knowl. Based Syst. 242, 108343 (2022). https://doi.org/10.1016/j.knosys.2022.108343

    Article  Google Scholar 

  44. Sepehri, A., Mishra, U., Sarkar, B.: A sustainable production-inventory model with imperfect quality under preservation technology and quality improvement investment. J. Clean. Prod. 310, 127332 (2021). https://doi.org/10.1016/j.jclepro.2021.127332

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MKS: He made the literature review, identified the research gap, model parameterization, has participated in the made the model, results discussion and conclusions. Also, has wrote the article. DM: She has made the model, results discussion and conclusions. Also, he has participated in the writing of the article, discussion of results and conclusions.

Corresponding author

Correspondence to Manoj Kumar Sharma.

Ethics declarations

Conflict of interest

According to the authors, there are no financial or personal conflicts of interest that might have impacted the results of this study.

Ethical approval

We express our consent to participate in this article, we also express that we know, respect and comply with the ethical requirements for the publication of the document.

Consent for publication

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfy the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of theorem 1:

To prove the theorem we will first find all three second derivative of \(Z\left( {t_{2} ,t_{3} } \right)\) with respect to \(t_{2}\) and \(t_{3}\) (see appendix 2).

We know that a function \(f\left( {x,y} \right)\) is minimum if (i) \(\frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} f}}{{\partial y^{2} }} - \frac{{\partial^{2} f}}{\partial x\partial y} > 0\) (ii) \(\frac{{\partial^{2} f}}{{\partial x^{2} }} > 0 \) and \(\frac{{\partial^{2} f}}{{\partial y^{2} }} > 0\).

Case 1:

$$ {\text{if}} \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}} \right]_{{at\, t_{2} = t_{2}^{*} }} > 0\;{\text{and }}\;\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}} \right]_{{at\, t_{3} = t_{3}^{*} }} > 0 $$
(21)

We take

\(\begin{gathered} \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}} \right]_{{at\, t_{2} = t_{2}^{*} }} \cdot { }\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}} \right]_{{at\, t_{3} = t_{3}^{*} }} - \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2} \partial t_{3} }}} \right]_{{at\, t_{2} = t_{2, }^{*} t_{3} = t_{3}^{*} }} \hfill \\ = \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}} \right]_{{at\, t_{2} = t_{2}^{*} }} .{ }\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}} \right]_{{at\, t_{3} = t_{3}^{*} }} > 0 \hfill \\ \end{gathered}\) (by Eq. (17))

(Since \(\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2} \partial t_{3} }}} \right] = 0\) at all points

Hence \(Z\left( {t_{2} ,t_{3} } \right)\) attend minimum value at \(t_{2}^{*}\) and \(t_{3}^{*}\).

Case 2:

$$ {\text{if }}\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}} \right]_{{at\, t_{2} = t_{2}^{*} }} < 0\;{\text{and}}\;\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}} \right]_{{at\, t_{3} = t_{3}^{*} }} < 0 $$
(22)

We take

\(\begin{gathered} \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}} \right]_{{at\, t_{2} = t_{2}^{*} }} \cdot { }\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}} \right]_{{at\, t_{3} = t_{3}^{*} }} - \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2} \partial t_{3} }}} \right]_{{at\, t_{2} = t_{2, }^{*} t_{3} = t_{3}^{*} }} \hfill \\ = \left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}} \right]_{{at\, t_{2} = t_{2}^{*} }} \cdot z\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}} \right]_{{at\, t_{3} = t_{3}^{*} }} > 0 \hfill \\ \end{gathered}\)(by Eq. (18)

(Since \(\left[ {\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2} \partial t_{3} }}} \right] = 0\) at all points (see appendix))

Hence \(Z\left( {t_{2} ,t_{3} } \right)\) attend minimum value at \(t_{2}^{*}\) and \(t_{3}^{*}\).

Therefor \(Z\left( {t_{2} ,t_{3} } \right)\) attends a minimum value at \(t_{2}^{*}\) and \(t_{3}^{*}\) if second derivative \(\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }}\) and \(\frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }}\) are either positive or negative at \(t_{2}^{*}\) and \(t_{3}^{*}\). This completes the proof.

Appendix 2

Computing the partial derivatives of \(Z({t}_{2},{t}_{3})\) with respect to \({t}_{2}and {t}_{3}\):

$$ \begin{aligned} \frac{{\partial Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2} }} = & - ac_{p} e^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \\ & \; + h_{1} \left[ { ae^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \left\{ {\frac{{t_{1} e^{{ - bt_{1} }} }}{b} + \frac{{(e^{{ - bt_{1} }} - 1)}}{{b^{2} }} + \frac{{at_{1}^{2} }}{2b} } \right\}} \right] \\ & \; + h_{2} \left[ { ae^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \left\{ { \frac{{(e^{{ - bt_{1} }} - 1)}}{b} + \frac{{at_{1} }}{b} } \right\}} \right] \\ & \; - ah_{1} \left[ {\mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} te^{{ - \left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} \cdot \left( {e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} } \right) + t_{2} e^{{ - \left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{\left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} dt} \right] \\ & \; - ah_{2} \left[ {\mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{ - \left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} \cdot \left( {e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} } \right) + e^{{ - \left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{\left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} dt} \right] \\ & \; - ae^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} + bt_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} + a^{2} \mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{ - \left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \\ & \; + e^{{ - \left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \cdot \mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{\left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} dt - \frac{{i_{c} \omega \sigma \left( {\eta + 1} \right)c_{p} }}{2\eta } \left[ { ae^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} } \right] \\ \end{aligned} $$
(23)
$$ \frac{{\partial Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3} }} = \frac{{C_{p} a}}{{1 + \delta t_{3} }} + \frac{{C_{b} a}}{\delta } \left( { 1 - \frac{1}{{1 + \delta t_{3} }} } \right) + \frac{{i_{c} \omega \sigma \left( {\eta + 1} \right)}}{2\eta } \cdot \frac{{C_{p} a}}{{1 + \delta t_{3} }} + C_{1} a\left( {1 - \frac{1}{{1 + \delta t_{3} }} } \right) $$
(24)
$$ \begin{aligned} \frac{{\partial ^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{2}^{2} }} = & - a\left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2} - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \\ & \; + h_{1} \left[ {a\left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2} - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \left\{ {~\frac{{t_{1} e^{{ - bt_{1} }} }}{b} + \frac{{\left( {e^{{ - bt_{1} }} - 1} \right)}}{{b^{2} }} + \frac{{at_{1}^{2} }}{{2b}}~} \right\}} \right] \\ & \; + h_{2} \left[ {~a\left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot e^{{\left( {\alpha t_{2} - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \left\{ {~\frac{{\left( {e^{{ - bt_{1} }} - 1} \right)}}{{b^{2} }} + \frac{{at_{1}^{2} }}{{2b}}~} \right\}} \right] \\ & \; - ah_{1} \left[ {\mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} t\left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} \cdot e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} dt + e^{{ - \left( {\alpha t_{2} - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{\left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} \left\{ {~1 - t_{2} \left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)} \right\}dt + 2t_{2} } \right] \\ & \; - ah_{2} \left[ {~\mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} \left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} \cdot ~e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} dt - \left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right) + ~e^{{ - \left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \cdot \mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{\left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} dt + 2~} \right] \\ & \; - \left\{ {ae^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} + bt_{1} } \right)}} ~\left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right) + ~e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} } \right\} \\ & \;a^{2} ~\left[ {~\mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} \left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} .~e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} dt + 1} \right] \\ & \; - \left( {\alpha \beta t_{2}^{{\beta - 1~}} - m\left( \xi \right) + b} \right).e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} \cdot ~\mathop \smallint \limits_{{t_{1} }}^{{t_{2} }} e^{{\left( {\alpha t^{\beta } - m\left( \xi \right)t + bt} \right)}} dt + 1 \\ & \; - \frac{{i_{c} \omega \sigma \left( {\eta + 1} \right)c_{p} }}{{2\eta }}~\left[ {a\left( {\alpha \beta t_{2}^{{\beta - 1}} - m\left( \xi \right) + b} \right)e^{{ - \left( {\alpha t_{1}^{\beta } - m\left( \xi \right)t_{1} } \right)}} \cdot ~e^{{\left( {\alpha t_{2}^{\beta } - m\left( \xi \right)t_{2} + bt_{2} } \right)}} } \right] \\ \end{aligned} $$
(25)
$$ \frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3}^{2} }} = - \frac{{C_{p} a\delta }}{{\left( {1 + \delta t_{3} } \right)^{2} }} + \frac{{C_{b} a}}{{\left( {1 + \delta t_{3} } \right)^{2} }} - \frac{{i_{c} \omega \sigma \left( {\eta + 1} \right)}}{2\eta }\frac{{C_{p} a\delta }}{{\left( {1 + \delta t_{3} } \right)^{2} }} + C_{1} a\left\{ {\frac{\delta }{{\left( {1 + \delta t_{3} } \right)^{2} }} } \right\} $$
(26)
$$ \frac{{\partial^{2} Z\left( {t_{2} ,t_{3} } \right)}}{{\partial t_{3} \partial t_{2} }} = 0 $$
(27)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Mandal, D. An inventory model with preservation technology investments and stock-varying demand under advanced payment scheme. OPSEARCH (2024). https://doi.org/10.1007/s12597-024-00743-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12597-024-00743-7

Keywords

Navigation