Skip to main content
Log in

Periodic inventory model with controllable lead time and back order discount for decaying items

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This study investigates the periodic inventory model for decaying goods that includes price discounts for backorders and considers that only a small portion of shortages are backlogged. The effect of managing lead time as a determining factor in the periodic inventory model. The present model develops a stochastic inventory model which together optimizes the backorder price discount, review period and the lead time for decaying items. During the protection interval, the demand has been looked at in two different ways: when demand distribution is known or not. The backorder ratio is influenced by price discount, and the suggested model assumes a constant deterioration rate. Numerical results show that a controlled lead time can yield significant savings. As far as the author knows, this is the first study to examine periodically deteriorating items with controlled lead times due to backorder discounts. On the other hand, as the products deteriorate at a faster pace, the overall annual cost rises. This research can help with the development of strategies for efficient inventory management of perishable commodities with backorder price reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, H., Nasreen, R., Arneja, N., Jaggi, C.K.: Optimization of a periodically assessing model with manageable lead time under SLC with back-order rebate for deteriorating items. Int. J. Syst. Assur. Eng. Manag. 14, 241–266 (2023)

    Article  Google Scholar 

  2. Arkan, A., Hejazi, S.R.: Coordinating orders in a two-echelon supply chain with controllable lead time and ordering cost using the credit period. Comput. Indust. Eng. 62, 56–69 (2012)

    Article  Google Scholar 

  3. Ben-Daya, M., Hariga, M.: Some stochastic inventory models with deterministic variable lead time. Euro. J. Oper. Res. 113, 42–51 (1999)

    Article  Google Scholar 

  4. Ben-Daya, M., Hariga, M.: Lead-Time Reduction in a Stochastic Inventory System with Learning Consideration. Int. J. Prod. Res. 41(3), 571–579 (2003)

    Article  Google Scholar 

  5. Ben-Daya, M., Raouf, A.: Inventory models involving lead time as a decision variable. J. Oper. Res. Soc. 45(5), 579–582 (1994)

    Article  Google Scholar 

  6. Chang, H.C., Ouyang, L.Y., Wu, K.S., Ho, C.H.: Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction. Eur. J. Oper. Res. 170, 481–495 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cheng, C.T., Teng, J.T., Goyal, S.K.: Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. Int. J. Prod. Econ. 123, 62–68 (2009)

    Article  Google Scholar 

  8. Chern, M.S., Yang, H.L., Teng, J.T., Papachristos, S.: Partial backlogging inventory lot-size models for deteriorating items with fluctuating demand under inflation. Euro. J. Oper. Res. 191, 127–141 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.K., Chang, H.C., Ouyang, L.Y.: A continuous review inventory model with ordering cost dependent on lead time. Int. J. Inform. Manage. Sci. 12(3), 1–13 (2001)

    MathSciNet  Google Scholar 

  10. Chuang, B.R., Ouyang, L.Y., Chuang, K.W.: A note on periodic review inventory model with controllable setup cost and lead time. Comput. Oper. Res. 31(4), 549–561 (2004)

    Article  Google Scholar 

  11. Chuang, B.R., Ouyang, L.Y., Lin, Y.J.: A minimax distribution free procedure for mixed inventory model with backorder discounts and variable lead time. J. Stat. Manag. Sys. 7(1), 65–76 (2004)

    Google Scholar 

  12. Chu, P., Yang, K.L., Chen, P.S.: Improved inventory models with service level and lead time. Com. Oper. Res. 32(2), 285–296 (2005)

    Article  MathSciNet  Google Scholar 

  13. Dai, Z., & Wang, Y. (2022). A production and inventory model for deteriorating items with two-level partial trade credit and stochastic demand in a supply chain. Kybernetes, (ahead-of-print).

  14. Dye, C.Y., Hsieh, T.P., Ouyang, L.Y.: Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging. Euro. J. Oper. Res. 181, 668–678 (2007)

    Article  Google Scholar 

  15. Dye, C.Y., Ouyang, L.Y., Hsieh, T.P.: Inventory and pricing strategies for deteriorating items with shortages: a discounted cash flow approach. Comp. Indus. Eng. 52, 29–40 (2007)

    Article  Google Scholar 

  16. Gallego, G., Moon, I.: The distribution free newsboy problem review and extensions. J. Oper. Res. Soc. 44, 825–834 (1993)

    Article  Google Scholar 

  17. Ghare, P.M., Schrader, G.F.: A model for exponentially decaying inventories. J. Indus. Eng. 14, 234–238 (1963)

    Google Scholar 

  18. Goyal, S.K., Giri, B.C.: Recent trends in modeling of deteriorating inventory. Euro. J. Oper. Res. 134, 1–16 (2001)

    Article  MathSciNet  Google Scholar 

  19. Goyal, S.K., Giri, B.C.: The production–inventory problem of a product with time varying demand, production and deterioration rates. Euro. J. Oper. Res. 147, 549–557 (2003)

    Article  MathSciNet  Google Scholar 

  20. Gutgutia, A., Jha, J.K.: A closed-form solution for the distribution free continuous review integrated inventory model. Oper. Res. Int. J. 18(1), 159–186 (2018)

    Article  Google Scholar 

  21. Hayya, J.C., Harrison, T.P., He, X.J.: The impact of stochastic lead time reduction on inventory cost under order crossover. Euro. Jour. Oper. Res. 211(2), 274–281 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ho, C.H.: A minimax distribution free procedure for an integrated inventory model with defective goods and stochastic lead time demand. Int. J. Inf. Manag. Sci. 20(1), 161–171 (2009)

    ADS  MathSciNet  Google Scholar 

  23. Hsieh, T.P., Dye, C.Y., Ouyang, L.Y.: Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value. Euro. J. Oper. Res. 191, 182–192 (2008)

    Article  MathSciNet  Google Scholar 

  24. Jha, J.K., Shanker, K.: Two-echelon supply chain inventory model with controllable lead time and service level constraint. Comp. Indust. Eng. 57, 1096–1104 (2009)

    Article  Google Scholar 

  25. Jha, J.K., Shanker, K.: A Single–vendor single-buyer production-inventory model with controllable lead time and service level constraint for decaying items. Int. J. Prod. Res. 47(24), 6875–6898 (2009)

    Article  Google Scholar 

  26. Jaggi, C.K., Arneja, N.: Periodic inventory model with unstable lead-time and setup cost with backorder discount. Int. J. Appl. Dec. Sci. 3(1), 53–73 (2010)

    Google Scholar 

  27. Jaggi, C.K., Ali, H., Arneja, N.: A technical note on periodic inventory model with controllable lead time under service level constraint. Elec. J. Appl. Stat. Anal. 9(1), 85–96 (2016)

    Google Scholar 

  28. Jaggi, C.K., Ali, H., Arneja, N.: Periodic inventory model with controllable lead time where back order rate depends on protection interval. Int. J. Ind. Eng. Comp. 5(2), 235–248 (2014)

    Google Scholar 

  29. Jaggi, C.K., Ali, H., Arneja, N.: Periodic review inventory model with controllable lead time under service level constraint where back-order rate depends on protection interval. Int. J. Invent. Cont. Manag. 3(1), 303–327 (2013)

    Google Scholar 

  30. Jiang, G., Ji, Y., Wu, Z., Nabé, M.: The optimal strategies in the supply chain with stochastic demand sensitivity to carbon emission. Journal of Control and Decision 8(1), 64–76 (2021)

    Article  MathSciNet  Google Scholar 

  31. Kim, S.J., Sarkar, B., Sarkar, S.: An inventory model with backorder price discount and stochastic lead time. DJ J. Eng. Appl. Math. 4(2), 34–48 (2018)

    Article  Google Scholar 

  32. Lee, W.C., Wu, J.W., Hou, W.B.: A note on inventory model involving variable lead time with defective units for mixtures of distribution. Int. J. Prod. Eco. 89(1), 31–44 (2004)

    Article  Google Scholar 

  33. Lee, W.C.: Inventory model involving controllable backorder rate and variable lead time demand with the mixtures of distribution. Appl. Math. Comp. 160(3), 701–717 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lee, W.C., Wu, J.W., Lei, C.L.: Computational algorithmic procedure for optimal inventory policy involving ordering cost reduction and back-order discounts when lead time demand is controllable. Appl. Math. Comp. 189(1), 186–200 (2007)

    Article  MathSciNet  Google Scholar 

  35. Li, R., Lan, H., Mawhinney, J.R.: A review on deteriorating inventory study. J. Ser. Manag. 3, 117–129 (2010)

    CAS  Google Scholar 

  36. Li, J.T., Teng, C.E., Wag, S.: Analysis of postponement strategy for perishable items by EOQ-based models. Int. J. Prod. Eco. 107, 31–38 (2007)

    Article  Google Scholar 

  37. Liao, C.J., Shyu, C.H.: An analytical determination of lead time with normal demand. Int. J. Oper. & Prod. Manag. 11(8), 72–78 (1991)

    Article  Google Scholar 

  38. Lin, Y.J.: Minimax distribution free procedure with backorder price discount. Int. J. Prod. Eco. 111, 118–128 (2008)

    Article  Google Scholar 

  39. Lin, Y.J.: A stochastic periodic review integrated inventory model involving defective items, backorder price discount, and variable lead time. 4OR 8, 281–297 (2010)

    Article  MathSciNet  Google Scholar 

  40. Malik, A.I., Sarkar, B.: A distribution-free model with variable setup cost, backorder price discount and controllable lead time. DJ J. Eng. Appl. Math. 4(2), 58–69 (2018)

    Article  Google Scholar 

  41. Maheshwari, S., Kausar, A., Hasan, A., Jaggi, C.K.: Sustainable inventory model for a three-layer supply chain using optimal waste management. Int. J. Syst. Assur. Eng. Manag. 14, 216–235 (2023)

    Article  Google Scholar 

  42. Moon, I., Shin, E., Sarkar, B.: Min-max distribution free continuous-review model with a service level constraint and variable lead time. Appl. Math. Comput. 229, 310–315 (2014)

    MathSciNet  Google Scholar 

  43. Moon, I., Choi, S.: A note on lead time and distributional assumptions in continuous review inventory models. Comp. Oper. Res. 25, 1007–1012 (1998)

    Article  MathSciNet  Google Scholar 

  44. Nahmias, S., Wang, S.S.: A heuristic lot size reorder point model for decaying inventories. Manage. Sci. 25(1), 90–97 (1979)

    Article  Google Scholar 

  45. Ouyang, L.Y., Chuang, B.R.: Mixture inventory model involving variable lead time and controllable backorder rate. Comp. Indus. Eng. 40(4), 339–348 (2001)

    Article  Google Scholar 

  46. Ouyang, L.Y., Chaung, B.R.: A minimax distribution free procedure for stochastic inventory models with a random backorder rate. J. Oper. Res. Soc. Japan. 42(3), 342–351 (1999)

    MathSciNet  Google Scholar 

  47. Ouyang, L.Y., Yeh, N.C., Wu, K.S.: Mixture inventory model with backorders and lost sales for variable lead time. J. Oper. Res. Soc. 47(6), 829–832 (1996)

    Article  Google Scholar 

  48. Ouyang, L.Y., Wu, K.S.: Mixture inventory model involving variable lead time with a service level constraint. Comp. Oper. Res. 24(9), 875–882 (1997)

    Article  MathSciNet  Google Scholar 

  49. Papachristos, S., Skouri, K.: An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential with type-backlogging. Oper. Res. Lett. 27, 175–184 (2000)

    Article  MathSciNet  Google Scholar 

  50. Pan, C.H., Hsiao, Y.C.: Inventory model backorder discounts and variable lead time. Int. J. Sys. Sci. 32, 925–929 (2001)

    Article  Google Scholar 

  51. Pan, C.H., Hsiao, Y.C.: Integrated inventory models with controllable lead time and backorder discount considerations. Int. J. Prod. Eco. 93, 387–397 (2005)

    Article  Google Scholar 

  52. Priyan, S., Uthayakumar, R.: Continuous review inventory model with controllable lead time, lost sales rate and order processing cost when the received quantity is uncertain. J. Manufac. Sys. 34, 23–33 (2015)

    Article  Google Scholar 

  53. Priyanka & Pareek, S. (2020). Two storage inventory model for non-instantaneous deteriorating item with stochastic demand under credit financing policy. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) (pp. 978–983). IEEE

  54. Priyanka, P., Pareek, S.: A sustainable inventory model for stochastic demand using innovative multi-item production system with reduced failure rate. Int. J. Syst. Assur. Eng. Manag. 14(3), 844–864 (2023)

    Article  Google Scholar 

  55. Raafat, F.: Survey of literature on continuously deteriorating inventory models. J. Oper. Res. Soc. 42, 27–37 (1991)

    Article  Google Scholar 

  56. Sarkar, B., Chaudhuri, K.S., Moon, I.: Manufacturing setup cost reduction and quality improvement for the distribution free continuous-review inventory model with a service level constraint. J. Manuf. Syst. 34, 74–82 (2015)

    Article  Google Scholar 

  57. Sarkar, B., Mandal, B., Sarkar, S.: Quality improvement and backorder price discount under controllable lead time in an inventory model. J. Manuf. Syst. 35, 26–36 (2015)

    Article  Google Scholar 

  58. Sarkar, B., Gupta, H., Chaudhuri, K., Goyal, S.K.: An integrated inventory model with variable lead time, defective units and delay in payments. Appl. Math. Comp. 237, 650–658 (2014)

    Article  MathSciNet  Google Scholar 

  59. Sana, S., Goyal, S.K., Chaudhary, K.S.: A production inventory model for a deteriorating item with trended demand and shortages. Euro. J. Oper. Res. 157, 357–371 (2004)

    Article  MathSciNet  Google Scholar 

  60. Scarf, H.: A min-max solution of an inventory problem. In: Arrow, K.J., Karlin, S., Scarf, H.E. (eds.) Studies in the Mathematical Theory of Inventory and Production. Standford University Press (1958)

    Google Scholar 

  61. Senapati, A.K., Mishra, P.C., Routra, B.C., Biswas, A.: An extensive literature review on lead time reduction in inventory control. Inter. J. Eng. Adv. Tech. 1(6), 2249–8958 (2012)

    Google Scholar 

  62. Shin, D., Guchhait, R., Sarkar, B., Mittal, M.: Controllable lead time, service level constraint, and transportation discounts in a continuous review inventory model. Rairo-Oper. Res. 50(45), 921–934 (2016)

    Article  MathSciNet  Google Scholar 

  63. Silver, E.A., Peterson, R.: Decision systems for Inventory Management and Production planning. Wiley, New York (1985)

    Google Scholar 

  64. Teng, J.T., Chang, C.T.: Economic production quantity models for deteriorating items with price and stock dependent demand. Comp. Oper. Res. 32, 297–308 (2005)

    Article  MathSciNet  Google Scholar 

  65. Tersine, R.J.: Principals of Inventory and materials management. North Holland, New York (1982)

    Google Scholar 

  66. Tahami, H., Mirzazadeh, A., Arshadi-khamseh, A., Gholami-Qadikolaei, A.: A periodic review integrated inventory model for buyer’s unidentified protection interval demand distribution. Cogent Eng. 3(1), 1206689 (2016)

    Article  Google Scholar 

  67. Tiwari, S., Kazemi, N., Modak, N.M., Cárdenas-Barrón, L.E., Sarkar, S.: The effect of human errors on an integrated stochastic supply chain model with setup cost reduction and backorder price discount. Int. J. Prod. Eco. 226, 107643 (2020)

    Article  Google Scholar 

  68. Thevenin, S., Adulyasak, Y., Cordeau, J.F.: Material requirements planning under demand uncertainty using stochastic optimization. Prod. Oper. Manag. 30(2), 475–493 (2021)

    Article  Google Scholar 

  69. Vidal, G.H.: Deterministic and stochastic inventory models in production systems: a review of the literature. Process Integr. Optim. Sustain. 7(1–2), 29–50 (2023)

    Article  Google Scholar 

  70. Wu, J.W., Tsai, H.Y.: Mixture inventory model with back orders and lost sales for variable lead time demand with the mixtures of normal distribution. Int. J. Sys. Sci. 32(2), 259–268 (2001)

    Article  MathSciNet  Google Scholar 

  71. Yadav, D., Singh, S.R., Kumar, S., Cardenas-Barron, L.E.: Manufacturer-retailer integrated inventory model with controllable lead time and service level constraint under the effect of learning-forgetting in setup cost. Scientia Iranica 29(2), 800–815 (2022)

    Google Scholar 

  72. Yang, P.C., Wee, H.M.: Economic ordering policy of deteriorated items for vendor and buyer: an integrated approach. Prod. Plan. and Cont. 11(5), 474–480 (2000)

    Article  CAS  Google Scholar 

  73. Yang, P.C., Wee, H.M.: A single-vendor and multiple-buyers production-inventory policy for a deteriorating item. Euro. J. Oper. Res. 143(3), 570–581 (2002)

    Article  MathSciNet  Google Scholar 

  74. Zhou, Y.W., Wang, S.D.: Optimal production and shipment models for a single-vendor– single-buyer integrated system. Euro. J. Oper. Res. 180(1), 309–328 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to the Editor-in-Chief and anonymous reviewers for their insightful feedback in significantly shaping the manuscript.

Funding

There is no funding available to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra K. Jaggi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Concept of the paper was generated by Prof. Chandra K Jaggi, there after modelling and drat is prepared by Haider Ali and Dr. Neetu Arneja and read and edited by Prof. Chandra K Jaggi and Prof. Reshma Nasreen. All authors have approved the manuscript and agree with its submission to the OPSEARCH.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of \(TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)\) is concave in \(L \in \left( {\Gamma_{i} ,\Gamma_{i - 1} } \right)\) in for set \(\tau ,\mu_{x}\).

$$\frac{{\partial TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{\partial \Gamma } = \frac{1}{T}\left[ \begin{gathered} \sigma \psi \left( {F_{s} } \right)\left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \alpha_{0} \mu_{x} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right\}\frac{{\left( {\tau + \Gamma } \right)^{{ - \frac{1}{2}}} }}{2} \hfill \\ + h_{c} \left\{ {\frac{{\left( {\tau + \Gamma } \right)^{{ - \frac{1}{2}}} }}{2} + \left( {1 - \frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right)\sigma \frac{{\left( {\tau + \Gamma } \right)^{{ - \frac{1}{2}}} }}{2}\psi \left( {F_{s} } \right)} \right\} \hfill \\ \end{gathered} \right]$$
(19)
$$\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \Gamma^{2} }} = \frac{ - 1}{{4\tau }}\left[ \begin{gathered} \sigma \psi \left( {F_{s} } \right)\left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \alpha_{0} \mu_{x} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right\}\left( {\tau + \Gamma } \right)^{{ - \frac{3}{2}}} \hfill \\ - \frac{{h_{c} }}{4}\left\{ {\left( {\tau + \Gamma } \right)^{{ - \frac{3}{2}}} + \left( {1 - \frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right)\sigma \frac{{\left( {\tau + \Gamma } \right)^{{ - \frac{3}{2}}} }}{2}\psi \left( {F_{s} } \right)} \right\} \hfill \\ \end{gathered} \right] < 0$$
(20)

Therefore, TEC is concave \(\Gamma \in \left( {\Gamma_{i} ,\Gamma_{i - 1} } \right)\) in for set \(\tau\) and \(\mu_{x}\).

Appendix 2

For a value of \(\Gamma \in \left( {\Gamma_{i} ,\Gamma_{i - 1} } \right)\), find the Hassian Matrix H as

$$H = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau^{2} }}} & {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau \mu_{x} }}} \\ {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau \mu_{x} }}} & {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \mu_{x}^{2} }}} \\ \end{array} } \right]$$

∴, Ist principal minor of \(H\) is given below.

$$\left| H \right| = \frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau^{2} }}$$
$$TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right) = \left[ \begin{gathered} \frac{{\sigma \sqrt {\left( {\tau + \Gamma } \right)} \psi \left( {F_{s} } \right)\left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \alpha_{0} \mu_{x} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right\}}}{\tau } \hfill \\ + h_{c} \left\{ {\frac{\lambda T}{2} + F_{s} \sigma \sqrt {\left( {\tau + \Gamma } \right)} + \left( {1 - \frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right)\sigma \sqrt {\left( {\tau + \Gamma } \right)} \psi \left( {F_{s} } \right)} \right\} \hfill \\ + \frac{{K + \sum\limits_{j = 1}^{i} {c_{j} } }}{\tau } + \,\,\frac{1}{\tau }\left[ {\frac{\lambda + \theta Z}{\theta }\left( {\theta \tau - 1} \right) - \lambda \tau } \right] \hfill \\ \end{gathered} \right]$$
(21)
$$\frac{{\partial TEC^{w} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{\partial \tau } = \left[ \begin{gathered} - \frac{{\sigma \sqrt {\left( {\tau + \Gamma } \right)} \psi \left( {F_{s} } \right)\left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }} - \alpha_{0} \mu_{x} } \right\}}}{{\tau^{2} }} \hfill \\ + \frac{{\frac{\sigma }{2}\frac{1}{{\sqrt {\left( {\tau + \Gamma } \right)} }}\psi \left( {F_{s} } \right)\left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }} - \alpha_{0} \mu_{x} } \right\}}}{\tau } \hfill \\ + h_{c} \left\{ {\frac{\lambda \tau }{2} + \frac{{F_{s} \sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 1}{2}}} }}{2} + \left( {1 - \frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right)\sigma \frac{{\left( {\tau + \Gamma } \right)^{{ - \frac{1}{2}}} }}{2}\psi \left( {F_{s} } \right)} \right\} \hfill \\ \,\, - \frac{{K + \sum\limits_{j = 1}^{i} {c_{j} } }}{{\tau^{2} }} + \frac{\lambda + \theta Z}{\theta }\left[ {\frac{{e^{\theta T} \left( {\theta T - 1} \right)}}{\tau }} \right] + \frac{\lambda + \theta Z}{{\theta \tau^{2} }} \hfill \\ \end{gathered} \right]$$
(22)

Equation (22) can be written as

$$\begin{gathered} \frac{{K + \sum\limits_{j = 1}^{i} {c_{j} } }}{{\tau^{2} }} + \frac{{\sigma \sqrt {\left( {\tau + \Gamma } \right)} \psi \left( {F_{s} } \right)N\left( {\mu_{x} } \right)}}{{\tau^{2} }} = \left[ \begin{gathered} \frac{{\frac{\sigma }{2}\frac{{N\left( {\mu_{x} } \right)}}{{\sqrt {\left( {\tau + \Gamma } \right)} }}\psi \left( {F_{s} } \right)}}{\tau } + \,\frac{\lambda + \theta Z}{\theta }\left[ {\frac{{e^{\theta \tau } \left( {\theta \tau - 1} \right)}}{\tau }} \right] + \frac{\lambda + \theta Z}{{\theta \tau^{2} }} \hfill \\ + h_{c} \left\{ {\frac{\lambda \tau }{2} + \frac{{F_{s} \sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 1}{2}}} }}{2} + \left( {1 - \frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}} \right)\sigma \frac{{\left( {\tau + \Gamma } \right)^{{ - \frac{1}{2}}} }}{2}\psi \left( {F_{s} } \right)} \right\} \hfill \\ \end{gathered} \right]\;\;{\text{Where}} \hfill \\ N\left( {\mu_{x} } \right) = \left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }} - \alpha_{0} \mu_{x} } \right\} \hfill \\ \end{gathered}$$
(23)
$$\begin{gathered} \frac{{\partial^{2} TEC^{w} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau^{2} }} = \left[ \begin{gathered} \frac{{\sigma \left( {3\tau + 4\Gamma } \right)\psi \left( {F_{s} } \right)N\left( {\mu_{x} } \right)}}{{2\tau^{3} \sqrt {\left( {\tau + \Gamma } \right)} }} + \frac{{\sigma \left( {3\tau + 2\Gamma } \right)N\left( {\mu_{x} } \right)\psi \left( {F_{s} } \right)}}{{4\sqrt {\left( {\tau + \Gamma } \right)} }} \hfill \\ - h_{c} \frac{{F_{s} \sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} }}{4} - h_{c} \frac{{\psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} }}{4} + \frac{1}{4}\frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}\psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} \hfill \\ \,\, + \frac{{2\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{\tau^{3} }} + \frac{\lambda + \theta Z}{\theta }\left[ {\theta^{2} e^{\theta \tau } - \frac{{e^{\theta \tau } \left( {\theta \tau - 1} \right)}}{{\tau^{2} }} - \frac{2}{{\tau^{3} }}} \right] \hfill \\ \end{gathered} \right]\;\;{\text{Where}} \hfill \\ N\left( {\mu_{x} } \right) = \left\{ {\frac{{\alpha_{0} \mu_{x}^{2} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} \mu_{x} }}{{\mu_{0} }} - \alpha_{0} \mu_{x} } \right\} \hfill \\ \end{gathered}$$
(24)
$$\frac{{\partial^{2} TEC^{w} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau^{2} }} = \psi \left( T \right) + \frac{{h_{c} \sigma }}{4}\left[ {F_{s} \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} + \psi \left( {F_{s} } \right)\left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} } \right]$$

where,

$$\psi \left( \tau \right) = \left[ \begin{gathered} \frac{{\sigma \left( {3\tau + 4\Gamma } \right)\psi \left( {F_{s} } \right)N\left( {\mu_{x} } \right)}}{{2\tau^{3} \sqrt {\left( {\tau + L} \right)} }} + \frac{{\sigma \left( {3\tau + 2\Gamma } \right)N\left( {\mu_{x} } \right)\psi \left( {F_{s} } \right)}}{{4\sqrt {\left( {\tau + \Gamma } \right)} }} \hfill \\ + \frac{{\sigma \left( {3\tau + 2\Gamma } \right)\psi \left( {F_{s} } \right)N\left( {\mu_{x} } \right)}}{{4\sqrt {\left( {\tau + L} \right)} }} + \frac{1}{4}\frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}\psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} \hfill \\ \,\, + \frac{{2\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{\tau^{3} }} + \frac{\lambda + \theta Z}{\theta }\left[ {\theta^{2} e^{\theta \tau } - \frac{{e^{\theta \tau } \left( {\theta \tau - 1} \right)}}{{\tau^{2} }} - \frac{2}{{\tau^{3} }}} \right] \hfill \\ \end{gathered} \right]$$
(25)

Now

$$\left| {H_{11} } \right| = \psi \left( \tau \right) - \frac{{h_{c} \sigma }}{4}\left[ {F_{s} \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} + \psi \left( {F_{s} } \right)\left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} } \right]$$
$$\sigma \left( \tau \right) = \left[ \begin{gathered} \,\,\frac{{\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{\tau^{2} }} + \frac{{\sigma \sqrt {\left( {\tau + \Gamma } \right)} \psi \left( {F_{s} } \right)N\left( {\mu_{x} } \right)}}{{\tau^{2} }} \hfill \\ - \frac{{\frac{\sigma }{2}\frac{1}{{\sqrt {\left( {\tau + \Gamma } \right)} }}N\left( {\mu_{x} } \right)\psi \left( {F_{s} } \right)}}{\tau } + \frac{\lambda + \theta Z}{\theta }\left[ {\theta^{2} e^{\theta \tau } - \frac{{e^{\theta \tau } \left( {\theta \tau - 1} \right)}}{{\tau^{2} }} - \frac{2}{{\tau^{3} }}} \right] \hfill \\ \end{gathered} \right]$$

Then

$$\sigma \left( \tau \right) > \frac{{h_{c} \sigma }}{4}\left[ {F_{s} \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} + \psi \left( {F_{s} } \right)\left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} } \right]$$
(26)

So from above we have

$$\left| {H_{11} } \right| > \psi \left( \tau \right) - \sigma \left( \tau \right) > 0$$

This implies \(\mu_{x} < \left( {s_{c} + \mu_{o} } \right)\)(therefore, \(\mu_{x} < \mu_{o}\) and \(s > 0\) which holds.

Therefore, \(\left| {H_{11} } \right| > 0\)

$$\frac{{\partial TEC^{w} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{\partial \tau } = \left[ \begin{gathered} - \frac{{\sigma \sqrt {\left( {\tau + \Gamma } \right)} \psi \left( {F_{s} } \right)\left\{ {\frac{{2\alpha_{0} \mu_{x} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} }}{{\mu_{0} }} - \alpha_{0} } \right\}}}{{\tau^{2} }} \hfill \\ + \frac{{\frac{\sigma }{2}\frac{1}{{\sqrt {\left( {\tau + \Gamma } \right)} }}\psi \left( {F_{s} } \right)\left\{ {\frac{{2\alpha_{0} \mu_{x} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} }}{{\mu_{0} }} - \alpha_{0} } \right\}}}{\tau } \hfill \\ - \left\{ {\frac{{h_{c} \alpha_{0} \psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 1}{2}}} }}{{\mu_{0} }}} \right\} \hfill \\ \end{gathered} \right]$$
(27)
$$\frac{{\partial TEC^{w} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \mu_{x} }} = \left[ {\frac{{\left\{ {\frac{{2\alpha_{0} \mu_{x} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} }}{{\mu_{0} }} - \alpha_{0} } \right\}}}{\tau } - \left\{ {\frac{{h_{c} \alpha_{0} \psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{\frac{1}{2}} }}{{\mu_{0} }}} \right\}} \right]$$
(28)
$$\frac{{\partial^{2} TEC^{w} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \mu_{x}^{2} }} = \frac{{2\alpha_{0} }}{{\mu_{o} }}$$
(29)

Similarly.

The 2nd minor principal of \(H\) to be as follows

$$\left| {H_{22} } \right| = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau^{2} }}} & {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau \mu_{x} }}} \\ {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau \mu_{x} }}} & {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \mu_{x}^{2} }}} \\ \end{array} } \right]$$
$$\left| {H_{22} } \right| = \frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \tau^{2} }} \times \frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \mu_{x}^{2} }} - \left( {\frac{{\partial^{2} TEC^{W} \left( {\tau ,\mu_{x} ,\Gamma } \right)}}{{\partial \mu_{x} \partial \tau }}} \right)^{2}$$
$$\begin{gathered} = \left[ \begin{gathered} \frac{{\sigma \left( {3\tau + 4\Gamma } \right)\psi \left( {F_{s} } \right)N\left( {\mu_{x} } \right)}}{{2\tau^{3} \sqrt {\left( {\tau + \Gamma } \right)} }} + \frac{{\sigma \left( {3\tau + 2L} \right)N\left( {\mu_{x} } \right)\psi \left( {F_{s} } \right)}}{{4\sqrt {\left( {\tau + \Gamma } \right)} }} \hfill \\ - \frac{{h_{c} \sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} F_{s} }}{4} - \frac{{h_{c} \sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} \psi \left( {F_{s} } \right)}}{4} + \frac{1}{4}\frac{{\alpha_{0} \mu_{x} }}{{\mu_{0} }}\psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{{\frac{ - 3}{2}}} \hfill \\ \,\, + \frac{{2\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{\tau^{3} }} + \frac{\lambda + \theta Z}{\theta }\left[ {\theta^{2} e^{\theta \tau } - \frac{{e^{\theta \tau } \left( {\theta \tau - 1} \right)}}{{\tau^{2} }} - \frac{2}{{\tau^{3} }}} \right] \hfill \\ \end{gathered} \right] \hfill \\ \times \frac{{2\alpha_{0} }}{{\mu_{o} }} - \left\{ \begin{gathered} - \frac{{\left\{ {\frac{{2\alpha_{0} \mu_{x} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} }}{{\mu_{0} }} - \alpha_{0} } \right\}\alpha_{0} \psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{\frac{1}{2}} }}{{\tau^{2} }} \hfill \\ + \frac{{\left\{ {\frac{{2\alpha_{0} \mu_{x} }}{{\mu_{0} }} + s_{c} + \mu_{0} - \frac{{s_{c} \alpha_{0} }}{{\mu_{0} }} - \alpha_{0} } \right\}\frac{\sigma }{2}\psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{\frac{1}{2}} }}{{\tau^{2} }} - \frac{{h_{c} \alpha_{0} \psi \left( {F_{s} } \right)\sigma \left( {\tau + \Gamma } \right)^{\frac{1}{2}} }}{{2\mu_{0} }} \hfill \\ \end{gathered} \right\}^{2} > 0 \hfill \\ \end{gathered}$$
(30)

For

$$\mu_{x} < \left( {s_{c} + \mu_{o} } \right)$$

Hence proved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Nasreen, R., Arneja, N. et al. Periodic inventory model with controllable lead time and back order discount for decaying items. OPSEARCH (2024). https://doi.org/10.1007/s12597-023-00738-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12597-023-00738-w

Keywords

Navigation