Skip to main content
Log in

A depth-based heuristic to solve the multi-objective influence spread problem using particle swarm optimization

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence spread in a social network is an iterative process that can take several steps. It begins with an activation seed and finishes when the current activation cannot influence more actors. The multi-objective influence spread problem corresponds to finding the smallest number of actors capable of maximizing the influence spread within the network. This problem has been solved by metaheuristic optimization algorithms using swarm intelligence methods. This article proposes a heuristic to improve the existing solution: when two sets of actors can influence the same number of actors, the one whose spread requires the least number of steps is chosen. The proposed solution is tested on two different real networks. The results show that the heuristic allowed better results for both networks and decreased the average number of steps in the influence spread processes (in 15.5 and 0.07 average steps, respectively), thus improving execution times. Moreover, the heuristic allowed decreasing the number of steps in 83% (against 17% of increasing) and 13% (against 7% of increasing) of the particles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the SNAP repository [47]. See Sect. 5.1 for all details.

References

  1. Yujie, Y.: In: Proceedings of the 2020 European Symposium on Software Engineering (ACM, 2020), pp. 181–186. https://doi.org/10.1145/3393822.3432322

  2. Molinero, X., Riquelme, F., Serna, M.: Measuring satisfaction and power in influence based decision systems. Knowl. Based Syst. 174, 144 (2019). https://doi.org/10.1016/j.knosys.2019.03.005

    Article  Google Scholar 

  3. Chandran, J., Viswanatham, V.M.: In: 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) IEEE, (2021). https://doi.org/10.1109/icaect49130.2021.9392387

  4. Molinero, X., Riquelme, F., Serna, M.: Cooperation through social influence. Eur. J. Oper. Res. 242(3), 960 (2015). https://doi.org/10.1016/j.ejor.2014.11.006

    Article  Google Scholar 

  5. Riquelme, F., Gonzalez-Cantergiani, P., Molinero, X., Serna, M.: The neighborhood role in the linear threshold rank on social networks. Phys. A Stat. Mech. Appl. 528, 121430 (2019). https://doi.org/10.1016/j.physa.2019.121430

    Article  Google Scholar 

  6. Zia, M.A., Zhang, Z., Chen, L., Hashim, M., Su, S.: Exploration of influential people for viral marketing. China Commun. 15(5), 138 (2018). https://doi.org/10.1109/cc.2018.8387993

    Article  Google Scholar 

  7. Riquelme, F., Olivares, R., Muñoz, F., Molinero, X., Serna, M.: Extremal coalitions for influence games through swarm intelligence-based methods. Comput. , Mater. Continua 70(3), 6305 (2022). https://doi.org/10.32604/cmc.2022.021804

  8. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge New York (1994)

    Book  Google Scholar 

  9. Domingos, P.M., Richardson, M.: In: D. Lee, M. Schkolnick, F.J. Provost, R. Srikant (eds.) Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, CA, USA, August 26–29, 2001, (ACM, 2001), pp. 57–66

  10. Kempe, D., Kleinberg, J., Tardos, É.: In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD’03 (ACM Press, 2003), pp. 137–146. https://doi.org/10.1145/956750.956769

  11. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420 (1978). https://doi.org/10.1086/226707

    Article  Google Scholar 

  12. Schelling, T.: Micromotives and Macrobehavior (Norton, 1978)

  13. Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Tech. rep., Academy of Marketing Science Review (2001)

  14. Nguyen, D.T., Das, S., Thai, M.T.: In: 2013 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2013), pp. 3060–3065. https://doi.org/10.1109/glocom.2013.6831541

  15. Olivares, R., Muñoz, F., Riquelme, F.: A multi-objective linear threshold influence spread model solved by swarm intelligence-based methods. Knowl. Based Syst. 212, 106623 (2021). https://doi.org/10.1016/j.knosys.2020.106623

    Article  Google Scholar 

  16. Yang, L., Li, Z., Giua, A.: Influence minimization in linear threshold networks. Automatica 100, 10 (2019). https://doi.org/10.1016/j.automatica.2018.10.053

    Article  Google Scholar 

  17. Long, C., Wong, R.C.W.: In: 2011 IEEE 11th International Conference on Data Mining (IEEE, 2011), pp. 427–436. https://doi.org/10.1109/icdm.2011.99

  18. Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A.: In: Applications of Evolutionary Computation (Springer International Publishing, 2017), pp. 221–233. https://doi.org/10.1007/978-3-319-55849-3_15

  19. de la Fuente, D., Vega-Rodríguez, M.A., Pérez, C.J.: Identifying key players in large social networks by using a multi-objective artificial bee colony optimization approach. Appl. Soft Comput. 77, 176 (2019). https://doi.org/10.1016/j.asoc.2019.01.018

    Article  Google Scholar 

  20. Sheikhahmadi, A., Zareie, A.: Identifying influential spreaders using multi-objective artificial bee colony optimization. Appl. Soft Comput. 94, 106436 (2020). https://doi.org/10.1016/j.asoc.2020.106436

    Article  Google Scholar 

  21. Kennedy, J., Eberhart, R.: In: Proceedings of ICNN’95—International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948. https://doi.org/10.1109/icnn.1995.488968

  22. Eberhart, R., Kennedy, J.: In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43. https://doi.org/10.1109/mhs.1995.494215

  23. Yang, X.S.: In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (Springer Berlin Heidelberg, 2010), pp. 65–74. https://doi.org/10.1007/978-3-642-12538-6_6

  24. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175 (2013). https://doi.org/10.1016/j.ins.2012.08.023

    Article  Google Scholar 

  25. Meignan, D., Schwarze, S., Voß, S.: Improving local-search metaheuristics through look-ahead policies. Ann. Math. Artif. Intell. 76(1–2), 59 (2015). https://doi.org/10.1007/s10472-015-9453-y

    Article  Google Scholar 

  26. Rinaldi, A.M., Russo, C., Tommasino, C.: A semantic approach for document classification using deep neural networks and multimedia knowledge graph. Exp. Syst. Appl. 169, 114320 (2021). https://doi.org/10.1016/j.eswa.2020.114320

    Article  Google Scholar 

  27. Wang, J., Xie, Y., Xie, S., Chen, X.: Cooperative particle swarm optimizer with depth first search strategy for global optimization of multimodal functions. Appl. Intell. 52(9), 10161 (2022). https://doi.org/10.1007/s10489-021-03005-x

    Article  Google Scholar 

  28. Huang, X., Zeng, T., Li, M.: A particle swarm optimization algorithm with gradient perturbation and binary tree depth first search strategy. J. Math. 2022, 1 (2022). https://doi.org/10.1155/2022/6599899

    Article  Google Scholar 

  29. Cui, L., Li, G., Lin, Q., Du, Z., Gao, W., Chen, J., Lu, N.: A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation. Inf. Sci. 367–368, 1012 (2016). https://doi.org/10.1016/j.ins.2016.07.022

    Article  Google Scholar 

  30. Khattab, H., Mahafzah, B.A., Sharieh, A.: A hybrid algorithm based on modified chemical reaction optimization and best-first search algorithm for solving minimum vertex cover problem. Neural Comput. Appl. 34(18), 15513 (2022). https://doi.org/10.1007/s00521-022-07262-w

    Article  Google Scholar 

  31. Jain, I., Jain, V.K., Jain, R.: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Appl. Soft Comput. 62, 203 (2018). https://doi.org/10.1016/j.asoc.2017.09.038

    Article  Google Scholar 

  32. Wang, W., Sun, Q., Zhao, X., Yang, F.: An improved particle swarm optimization algorithm for QoS-aware web service selection in service oriented communication. Int. J. Comput. Intell. Syst. 3(sup01), 18 (2010). https://doi.org/10.1080/18756891.2010.9727750

    Article  Google Scholar 

  33. Olivares, R., Soto, R., Crawford, B., Riquelme, F., Munoz, R., Ríos, V., Cabrera, R., Castro, C.: Entropy–based diversification approach for bio–computing methods. Entropy 24(9), 1293 (2022). https://doi.org/10.3390/e24091293

    Article  Google Scholar 

  34. Valdivia, S., Soto, R., Crawford, B., Caselli, N., Paredes, F., Castro, C., Olivares, R.: Clustering-based binarization methods applied to the crow search algorithm for 0/1 combinatorial problems. Mathematics 8(7), 1070 (2020). https://doi.org/10.3390/math8071070

    Article  Google Scholar 

  35. Caselli, N., Soto, R., Crawford, B., Valdivia, S., Olivares, R.: A self-adaptive cuckoo search algorithm using a machine learning technique. Mathematics 9(16), 1840 (2021). https://doi.org/10.3390/math9161840

    Article  Google Scholar 

  36. Soto, R., Crawford, B., Molina, F.G., Olivares, R.: Human behaviour based optimization supported with self-organizing maps for solving the s-box design problem. IEEE Access 9, 84605 (2021). https://doi.org/10.1109/access.2021.3087139

    Article  Google Scholar 

  37. Talbi, E.G.: Machine learning into metaheuristics. ACM Comput. Surv. 54(6), 1 (2021). https://doi.org/10.1145/3459664

    Article  Google Scholar 

  38. Riquelme, F., Muñoz, F., Olivares, R., In: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ACM, 2021), pp. 479–486. https://doi.org/10.1145/3487351.3488558

  39. Crawford, B., Soto, R., Monfroy, E., Castro, C., Palma, W., Paredes, F.: A hybrid soft computing approach for subset problems. Math. Prob. Eng. 2013, 1 (2013). https://doi.org/10.1155/2013/716069

    Article  Google Scholar 

  40. Cunegatti, E., Iacca, G., Bucur, D.: Large-scale multi-objective influence maximisation with network downscaling, CoRR abs/2204.06250 (2022). https://doi.org/10.48550/arXiv.2204.06250

  41. Muñoz, F., Olivares, R., Riquelme, F.: Swarm intelligence algorithms for multi-objective. IMP (2020). https://doi.org/10.6084/M9.FIGSHARE.13046342

    Article  Google Scholar 

  42. Cho, J.H., Wang, Y., Chen, I.R., Chan, K.S., Swami, A.: A survey on modeling and optimizing multi-objective systems. IEEE Commun. Surv. Tutorials 19(3), 1867 (2017). https://doi.org/10.1109/comst.2017.2698366

    Article  Google Scholar 

  43. Zhu, S., Xu, L., Goodman, E.D.: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy. Knowl. Based Syst., p. 105018 (2019). https://doi.org/10.1016/j.knosys.2019.105018

  44. Liagkouras, K.: A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowl. Based Syst. 163, 186 (2019). https://doi.org/10.1016/j.knosys.2018.08.025

    Article  Google Scholar 

  45. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math. Modell. 3(5), 391 (1982). https://doi.org/10.1016/0270-0255(82)90038-0

    Article  Google Scholar 

  46. Deb, K.: In: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing (Springer London, 2011), pp. 3–34. https://doi.org/10.1007/978-0-85729-652-8_1

  47. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (2014)

  48. Kumar, S., Spezzano, F., Subrahmanian, V.S., Faloutsos, C.: In: 2016 IEEE 16th International Conference on Data Mining (ICDM) (IEEE, 2016), pp. 221–230. https://doi.org/10.1109/icdm.2016.0033

  49. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.: In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining - WSDM’18 (ACM Press, 2018), pp. 333–341. https://doi.org/10.1145/3159652.3159729

  50. Domenico, M.D., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3(1) (2013). https://doi.org/10.1038/srep02980

  51. Molinero, X., Riquelme, F., Serna, M.: In: Ambient Intelligence—Software and Applications (Springer International Publishing, 2014), pp. 23–30. https://doi.org/10.1007/978-3-319-07596-9_3

  52. Muñoz, F., Olivares, R., Riquelme, F.: Swarm intelligence algorithms for multi-objective imp: Step-by-step improvement (2022). https://doi.org/10.6084/m9.figshare.19086698

  53. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658 (2011). https://doi.org/10.1016/j.asoc.2011.01.037

    Article  Google Scholar 

  54. Krioukov, D.: Clustering implies geometry in networks. Phys. Rev. Lett. 116(20) (2016). https://doi.org/10.1103/physrevlett.116.208302

Download references

Funding

F. Riquelme has been supported by Fondecyt de Iniciación 11200113, ANID, Chile. R. Olivares has been supported by Fondecyt de Iniciación 11231016, ANID, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Riquelme.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riquelme, F., Muñoz, F. & Olivares, R. A depth-based heuristic to solve the multi-objective influence spread problem using particle swarm optimization. OPSEARCH 60, 1267–1285 (2023). https://doi.org/10.1007/s12597-023-00662-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-023-00662-z

Keywords

Navigation