Skip to main content
Log in

Two echelon economic lot sizing problems with geometric shipment policy backorder price discount and optimal investment to reduce ordering cost

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This article presents a single-vendor and a single-buyer joint economic lot size (JELS) production-distribution inventory model with the prime aim on; the effect of the investment on ordering cost reduction, back order price discount and reduction on lead time. The produced items are delivered to the buyer by adopting a geometric shipment policy. Two continuous review models are developed by assuming that the lead time demand follows a normal distribution and distribution-free. Two types of investments are incorporated to reduce the ordering cost. They are (i) logarithmic investment function and (ii) power investment function. The minimax distribution free approach is adopted in the distribution-free model to find the optimal values of the decision variables by minimizing the expected annual total cost of the system. Numerical examples are given to validate the proposed models. Sensitivity analysis is also performed to analyze the behavior of the key parameters on lot size, ordering cost, backorder price discount, the number of shipments from the vendor to the buyer in one production run and the expected annual total cost of the proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annadurai, K., Uthayakumar, R.: Ordering cost reduction in probabilistic inventory model with controllable lead time and a service level. Int. J. Manag. Sci. Eng. Manag. 5(6), 403–410 (2010)

    Google Scholar 

  2. Banerjee, A.: A joint economic-lot-size model for purchaser and vendor. Decis. Sci. 17(3), 292–311 (1986)

    Article  Google Scholar 

  3. Ben-Daya, M.A., Raouf, A.: Inventory models involving lead time as a decision variable. J. Oper. Res. Soc. 45(5), 579–582 (1994)

    Article  Google Scholar 

  4. Ben-Daya, M., Hariga, M.: Integrated single vendor single buyer model with stochastic demand and variable lead time. Int. J. Prod. Econ. 92(1), 75–80 (2004)

    Article  Google Scholar 

  5. Chuang, B.R., Ouyang, L.Y., Lin, Y.J.: A minimax distribution free procedure for mixed inventory model with backorder discounts and variable lead time. J. Stat. Manag. Syst. 7(1), 65–76 (2004)

    Google Scholar 

  6. Chang, H.C., Ouyang, L.Y., Wu, K.S., Ho, C.H.: Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction. Eur. J. Oper. Res. 170(2), 481–495 (2006)

    Article  Google Scholar 

  7. Coates, E.R., Sarker, B.R., Ray, T.G.: Manufacturing setup cost reduction. Comput. Ind. Eng. 31(1–2), 111–114 (1996)

    Article  Google Scholar 

  8. Darwish, M.A.: Economic selection of process mean for single-vendor single-buyer supply chain. Eur. J. Oper. Res. 199(1), 162–169 (2009)

    Article  Google Scholar 

  9. Dey, O., Giri, B.C.: Optimal vendor investment for reducing defect rate in a vendor-buyer integrated system with imperfect production process. Int. J. Prod. Econ. 155, 222–228 (2014)

    Article  Google Scholar 

  10. Gallego, G., Moon, I.: The distribution free newsboy problem: review and extensions. J. Oper. Res. Soc. 44(8), 825–834 (1993)

    Article  Google Scholar 

  11. Giri, B.C., Sharma, S.: Lot sizing and unequal-sized shipment policy for an integrated production-inventory system. Int. J. Syst. Sci. 45(5), 888–901 (2014)

    Article  Google Scholar 

  12. Giri, B.C., Chakraborty, A., Maiti, T.: Consignment stock policy with unequal shipments and process unreliability for a two-level supply chain. Int. J. Prod. Res. 55(9), 2489–2505 (2017)

    Article  Google Scholar 

  13. Glock, C.H.: A comment: “Integrated single vendor-single buyer model with stochastic demand and variable lead time’’. Int. J. Prod. Econ. 122(2), 790–792 (2009)

    Article  Google Scholar 

  14. Glock, C.H.: Lead time reduction strategies in a single-vendor-single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand. Int. J. Prod. Econ. 136(1), 37–44 (2012)

    Article  Google Scholar 

  15. Glock, C.H.: The joint economic lot size problem: a review. Int. J. Prod. Econ. 135(2), 671–686 (2012)

    Article  Google Scholar 

  16. Glock, C.H., Grosse, E.H., Ries, J.M.: The lot sizing problem: a tertiary study. Int. J. Prod. Econ. 155, 39–51 (2014)

    Article  Google Scholar 

  17. Goyal, S.K.: An integrated inventory model for a single supplier-single customer problem. Int. J. Prod. Res. 15(1), 107–111 (1977)

    Article  Google Scholar 

  18. Goyal, S.K.: “A joint economic-lot-size model for purchaser and vendor’’: a comment. Decis. Sci. 19(1), 236–241 (1988)

    Article  Google Scholar 

  19. Goyal, S.K.: A one-vendor multi-buyer integrated inventory model: a comment. Eur. J. Oper. Res. 82(1), 209–210 (1995)

    Article  Google Scholar 

  20. Goyal, S.K., Nebebe, F.: Determination of economic production-shipment policy for a single-vendor-single-buyer system. Eur. J. Oper. Res. 121(1), 175–178 (2000)

    Article  Google Scholar 

  21. Hill, R.M.: The single-vendor single-buyer integrated production-inventory model with a generalised policy. Eur. J. Oper. Res. 97(3), 493–499 (1997)

    Article  Google Scholar 

  22. Hill, R.M.: The optimal production and shipment policy for the single-vendor single-buyer integrated production-inventory problem. Int. J. Prod. Res. 37(11), 2463–2475 (1999)

    Article  Google Scholar 

  23. Ho, C.H.: A minimax distribution free procedure for an integrated inventory model with defective goods and stochastic lead time demand. Int. J. Inf. Manag. Sci. 20(1), 161–171 (2009)

    Google Scholar 

  24. Hoque, M.A., Goyal, S.K.: A heuristic solution procedure for an integrated inventory system under controllable lead-time with equal or unequal sized batch shipments between a vendor and a buyer. Int. J. Prod. Econ. 102(2), 217–225 (2006)

    Article  Google Scholar 

  25. Hoque, M.A.: A manufacturer-buyer integrated inventory model with stochastic lead times for delivering equal-and/or unequal-sized batches of a lot. Comput. Oper. Res. 40(11), 2740–2751 (2013)

    Article  Google Scholar 

  26. Hsu, S.L., Lee, C.C.: Replenishment and lead time decisions in manufacturer-retailer chains. Transp. Res. Part E Logist. Transp. Rev. 45(3), 398–408 (2009)

    Article  Google Scholar 

  27. Kim, S.L., Hayya, J.C., Hong, J.D.: Setup reduction in the economic production quantity model. Decis. Sci. 23(2), 500–508 (1992)

    Article  Google Scholar 

  28. Kotler, P., Keller, K.L.: Marketing management, 12th edn. Prentice-Hall, Upper Saddle River (2006)

    Google Scholar 

  29. Lin, Y.J.: An integrated vendor-buyer inventory model with backorder price discount and effective investment to reduce ordering cost. Comput. Ind. Eng. 56(4), 1597–1606 (2009)

    Article  Google Scholar 

  30. Hsien-Jen, L.I.N.: An integrated supply chain inventory model with imperfect-quality items, controllable lead time and distribution-free demand. Yugosl. J. Oper. Res. 23(1), 87–109 (2013)

    Article  Google Scholar 

  31. Lu, L.: A one-vendor multi-buyer integrated inventory model. Eur. J. Oper. Res. 81(2), 312–323 (1995)

    Article  Google Scholar 

  32. Liao, C.J., Shyu, C.H.: An analytical determination of lead time with normal demand. Int. J. Oper. Prod. Manag. 11(9), 72–78 (1991)

    Article  Google Scholar 

  33. Ouyang, L.Y., Chen, C.K., Chang, H.C.: Lead time and ordering cost reductions in continuous review inventory systems with partial backorders. J. Oper. Res. Soc. 50(12), 1272–1279 (1999)

    Article  Google Scholar 

  34. Ouyang, L.Y., Wu, K.S., Ho, C.H.: Integrated vendor-buyer cooperative models with stochastic demand in controllable lead time. Int. J. Prod. Econ. 92(3), 255–266 (2004)

    Article  Google Scholar 

  35. Ouyang, L.Y., Wu, K.S., Ho, C.H.: An integrated vendor-buyer inventory model with quality improvement and lead time reduction. Int. J. Prod. Econ. 108(1), 349–358 (2007)

    Article  Google Scholar 

  36. Ouyang, L.Y., Chuang, B.R., Lin, Y.J.: The inter-dependent reductions of lead time and ordering cost in periodic review inventory model with backorder price discount. Int. J. Inf. Manag. Sci. 18(3), 195 (2007)

    Google Scholar 

  37. Porteus, E.L.: Investing in reduced setups in the EOQ model. Manag. Sci. 31(8), 998–1010 (1985)

    Article  Google Scholar 

  38. Pan, J.C.H., Hsiao, Y.C.: Inventory models with back-order discounts and variable lead time. Int. J. Syst. Sci. 32(7), 925–929 (2001)

    Article  Google Scholar 

  39. Pan, J.C.H., Yang, J.S.: A study of an integrated inventory with controllable lead time. Int. J. Prod. Res. 40(5), 1263–1273 (2002)

    Article  Google Scholar 

  40. Pan, J.C.H., Lo, M.C., Hsiao, Y.C.: Optimal reorder point inventory models with variable lead time and backorder discount considerations. Eur. J. Oper. Res. 158(2), 488–505 (2004)

    Article  Google Scholar 

  41. Pan, J.C.H., Hsiao, Y.C.: Integrated inventory models with controllable lead time and backorder discount considerations. Int. J. Prod. Econ. 93, 387–397 (2005)

    Article  Google Scholar 

  42. Pandey, A., Masin, M., Prabhu, V.: Adaptive logistic controller for integrated design of distributed supply chains. J. Manuf. Syst. 26(2), 108–115 (2007)

    Article  Google Scholar 

  43. Sajadieh, M.S., Jokar, M.R.A., Modarres, M.: Developing a coordinated vendor-buyer model in two-stage supply chains with stochastic lead-times. Comput. Oper. Res. 36(8), 2484–2489 (2009)

    Article  Google Scholar 

  44. Teng, J.T., Cárdenas-Barrón, L.E., Lou, K.R.: The economic lot size of the integrated vendor-buyer inventory system derived without derivatives: a simple derivation. Appl. Math. Comput. 217(12), 5972–5977 (2011)

    Google Scholar 

  45. Tsou, C.S., Fang, H.H., Lo, H.C., Huang, C.H.: A study of cooperative advertising in a manufacturer-retailer supply chain. Int. J. Inf. Manag. Sci. 20(12), 5–26 (2009)

    Google Scholar 

  46. Woo, Y.Y., Hsu, S.L., Wu, S.: An integrated inventory model for a single vendor and multiple buyers with ordering cost reduction. Int. J. Prod. Econ. 73(3), 203–215 (2001)

    Article  Google Scholar 

  47. Zhang, T., Liang, L., Yu, Y., Yu, Y.: An integrated vendor-managed inventory model for a two-echelon system with order cost reduction. Int. J. Prod. Econ. 109(1), 241–253 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The work of authors are supported by Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India, New Delhi, under the grant number DST-SERB/SR/S4/MS: 814/13-Dated 24.04.2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Similar to the results proved in Lin [30] the convexity of the cost function is discussed.

Observation 1

\(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is concave in \(L \in [L_{i}, L_{i-1}]\) for a fixed \(n, q_{1}, k, A_{b}, \pi _{x}\).

$$\begin{aligned} \frac{\partial EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial L}&= \frac{nD(\lambda -1)}{q_{1}(\lambda ^{n} -1)}\Bigl [ G(\pi _{x})\sigma \psi (k)\frac{1}{2\sqrt{L}}-c_{i} \Bigr ]\nonumber \\&\quad +\frac{h_{b}}{2\sqrt{L}}\Bigl [k\sigma +\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr )\sigma \psi (k) \Bigr ] \end{aligned}$$
(30)
$$\begin{aligned} \frac{\partial ^{2}EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial L^{2}}&=-\frac{1}{4{L^{\frac{3}{2}}}}\Bigl [\frac{nD(\lambda -1)}{q_{1}(\lambda ^{n} -1)} G(\pi _{x})\sigma \psi (k)\nonumber \\&\quad +h_{b}\Bigl [k\sigma +\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr )\sigma \psi (k) \Bigr ]\Bigr ]<0 \end{aligned}$$
(31)

Thus for a fixed \((n, q_{1}, k, A_{b}, \pi _{x})\), \(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is concave in \(L \in [L_{i}, L_{i-1}]\). Hence the minimum value of \(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) exists at the end points of the interval \([L_{i}, L_{i-1}]\).

Observation 2

\(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in n for a fixed \(k, q_{1}, L, A_{b}, \pi _{x}\).

$$\begin{aligned}&\text{ For, } \ \ \frac{\partial ^2}{\partial n^{2}}EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)=(h_b-h_v)\frac{\lambda ^nq_1(\ln \lambda )^2}{2(\lambda +1)}\\&\quad +h_v\frac{\lambda ^nq_1(\ln \lambda )^2(P-D)}{2P(\lambda -1)}\\&\quad +\frac{2A_vD\lambda ^n\ln \lambda (\lambda -1)}{nq_1(\lambda ^n-1)^2}+\frac{YD\lambda ^n\ln \lambda (\lambda -1)(n\ln \lambda (\lambda ^n+1)-2)}{q_1(\lambda ^n-1)^3}>0, \end{aligned}$$

where \(Y = \Bigl (A_{b}+\frac{A_{v}}{n}\Bigr ) +G(\pi _x)\sigma \sqrt{L}\psi (k)+R(L)+T_{r}\)

Observation 3

\(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in \(q_{1}\) for a fixed \(n, k, L, A_{b}, \pi _{x}\).

$$\begin{aligned}&\frac{\partial EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial q_{1}} = -\frac{1}{q_{1}^{2}}\Bigl [\Bigl (A_{b}+\frac{A_{v}}{n}\Bigr )\nonumber \\&\quad +G(\pi _{x})\sigma \sqrt{L}\psi (k)+T_{r}+R(L)\Bigr ]\frac{nD(\lambda - 1)}{\lambda ^{n}-1}\nonumber \\&\quad +h_{b}\Bigl [\frac{(\lambda ^{n}+1)}{2(\lambda +1)}\Bigr ]+h_{v}\Bigl [\frac{D}{P}+\frac{(P-D)(\lambda ^{n}-1)}{2P(\lambda -1)}-\frac{(\lambda ^{n}+1)}{2(\lambda +1)}\Bigr ] \end{aligned}$$
(32)
$$\begin{aligned}&\frac{\partial ^{2}EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial q_{1}^{2}}=\frac{2}{q_{1}^{3}}\frac{nD(\lambda - 1)}{(\lambda ^{n}-1)}\Bigl [\Bigl (A_{b}+\frac{A_{v}}{n}\Bigr )\nonumber \\&\quad +G(\pi _{x})\sigma \sqrt{L}\psi (k) +T_{r}+R(L)\Bigr ] > 0 \end{aligned}$$
(33)

Observation 4

\(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in k for a fixed \(n, q_{1}, L, A_{b}, \pi _{x}\).

$$\begin{aligned}&\frac{\partial EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial k} = \sigma \sqrt{L}\Bigl [\Bigl (\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}G(\pi _{x})\nonumber \\&\quad +h_{b}\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr ) \Bigr )\Bigl (F(k)-1\Bigr )+h_{b}\Bigr ] \end{aligned}$$
(34)
$$\begin{aligned}&\frac{\partial ^{2}EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial k^{2}}=\sigma \sqrt{L}\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}G(\pi _{x})\phi (k)\nonumber \\&\quad +h_{b}\sigma \sqrt{L}\phi (k)\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr ) > 0 \end{aligned}$$
(35)

Observation 5

\(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in \(\pi _{x}\) for a fixed \(n, q_{1}, L, A_{b}, k\).

$$\begin{aligned}&\text{ For, }~~ \frac{\partial EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial \pi _{x}} \nonumber \\&\quad = \beta _{0}\sigma \sqrt{L}\psi (k)\Bigl [-\frac{h_{b}}{\pi _{0}} +\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}\Bigl (2\frac{\pi _{x}}{\pi _{0}}-1\Bigr )\Bigr ] \end{aligned}$$
(36)
$$\begin{aligned}&\text{ and }~~\frac{\partial ^{2}EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial \pi _{x}^{2}}=\sigma \sqrt{L}\psi (k)\frac{2nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}\frac{\beta _{0}}{\pi _{0}} > 0 \end{aligned}$$
(37)

Observation 6

\(EATCI_{N}^{L}(n, q_{1}, k, \pi _{x}, \pi _{x}, L)\) is convex in \(A_{b}\) for a fixed \(n, q_{1}, L, \pi _{x}, k\).

$$\begin{aligned}&\text{ For, }~~ \frac{\partial EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial A_{b}}=-\frac{\tau }{\delta A_{b}}+\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)} \end{aligned}$$
(38)
$$\begin{aligned}&\text{ and }~~\frac{\partial ^{2}EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial A_{b}^{2}}=\frac{\tau }{\delta A_{b}^{2} } > 0 \end{aligned}$$
(39)

Observation 7

\(EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is concave in \(L \in [L_{i}, L_{i-1}]\) for a fixed \(n, q_{1}, k, A_{b}, \pi _{x}\).

$$\begin{aligned}&\text{ For, }~~\frac{\partial EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial L} = \frac{nD(\lambda -1)}{q_{1}(\lambda ^{n} -1)}\Bigl [ G(\pi _{x})\sigma K\frac{1}{2\sqrt{L}}-c_{i} \Bigr ]\nonumber \\&\quad +\frac{h_{b}}{2\sqrt{L}}\Bigl [k\sigma +\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr )\sigma K \Bigr ] \end{aligned}$$
(40)
$$\begin{aligned}&\frac{\partial ^{2}EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial L^{2}} =-\frac{1}{4{L^{\frac{3}{2}}}}\Bigl [\frac{nD(\lambda -1)}{q_{1}(\lambda ^{n} -1)} G(\pi _{x})\sigma K\nonumber \\&\quad +h_{b}\Bigl [k\sigma +\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr )\sigma K \Bigr ]\Bigr ]<0 \end{aligned}$$
(41)

Thus for a fixed \((n, q_{1}, k, A_{b}, \pi _{x})\), \(EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is concave in \(L \in [L_{i}, L_{i-1}]\). Hence the minimum value of \(EATCI_{N}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) exists at the end points of the interval \([L_{i}, L_{i-1}]\).

Observation 8

\(EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in n for a fixed \(k, q_{1}, L, A_{b}, \pi _{x}\),.

$$\begin{aligned}&\text{ For, } \ \ \frac{\partial ^2}{\partial n^{2}}EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)=(h_b-h_v)\frac{\lambda ^nq_1(\ln \lambda )^2}{2(\lambda +1)}\\&\quad +h_v\frac{\lambda ^nq_1(\ln \lambda )^2(P-D)}{2P(\lambda -1)}\\&\quad +\frac{2A_vD\lambda ^n\ln \lambda (\lambda -1)}{nq_1(\lambda ^n-1)^2}+\frac{YD\lambda ^n\ln \lambda (\lambda -1)(n\ln \lambda (\lambda ^n+1)-2)}{q_1(\lambda ^n-1)^3}>0, \end{aligned}$$

where \(Y = \Bigl (A_{b}+\frac{A_{v}}{n}\Bigr ) +G(\pi _x)\sigma \sqrt{L}K+R(L)+T_{r}\)

Observation 9

\(EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in \(q_{1}\) for a fixed \(n, k, L, A_{b}, \pi _{x}\),.

$$\begin{aligned}&\text{ For, }~~ \frac{\partial EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial q_{1}} = -\frac{1}{q_{1}^{2}}\Bigl [\Bigl (A_{b}+\frac{A_{v}}{n}\Bigr )\nonumber \\&\quad +G(\pi _{x})\sigma \sqrt{L}K+T_{r}+R(L)\Bigr ]\frac{nD(\lambda - 1)}{(\lambda ^{n}-1)}\nonumber \\&\quad +h_{b}\Bigl [\frac{(\lambda ^{n}+1)}{2(\lambda +1)}\Bigr ]+h_{v}\Bigl [\frac{D}{P}+\frac{(P-D)(\lambda ^{n}-1)}{2P(\lambda -1)}-\frac{(\lambda ^{n}+1)}{2(\lambda +1)}\Bigr ] \end{aligned}$$
(42)
$$\begin{aligned}&\text{ and }~~\frac{\partial ^{2}EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial q_{1}^{2}}=\frac{2}{q_{1}^{3}}\frac{nD(\lambda - 1)}{(\lambda ^{n}-1)}\Bigl [\Bigl (A_{b}+\frac{A_{v}}{n}\Bigr )\nonumber \\&\quad +G(\pi _{x})\sigma \sqrt{L}K+T_{r}+R(L)\Bigr ] > 0 \end{aligned}$$
(43)

Observation 10

\(EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in k for a fixed \(n, q_{1}, L, A_{b}, \pi _{x}\).

$$\begin{aligned}&\frac{\partial EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial k} = \frac{\sigma \sqrt{L}}{2}\left[ \left( \frac{G(\pi _x)Dn(\lambda -1)}{q_1(\lambda ^n-1)}+h_b\left( 1-\frac{\beta _0\pi _x}{\pi _0}\right) \right) \right. \nonumber \\&\quad \left. \times \left( \frac{k}{\sqrt{1+k^2}}-1\right) +2h_b\right] \end{aligned}$$
(44)
$$\begin{aligned}&\frac{\partial ^{2}EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial k^{2}}=\frac{\sigma \sqrt{L}}{2(1+k^{2})^{\frac{3}{2}}} \Bigl [\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}G(\pi _{x})+h_{b}\Bigl (1-\frac{\beta _{0}\pi _{x}}{\pi _{0}}\Bigr )\Bigr ] > 0 \end{aligned}$$
(45)

Observation 11

\(EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)\) is convex in \(\pi _{x}\) for a fixed \(n, q_{1}, L, A_{b}, k\).

$$\begin{aligned} \text{ For, }~~ \frac{\partial EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial \pi _{x}}&= \beta _{0}\sigma \sqrt{L}K\Bigl [-\frac{h_{b}}{\pi _{0}} +\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}\Bigl (2\frac{\pi _{x}}{\pi _{0}}-1\Bigr )\Bigr ] \end{aligned}$$
(46)
$$\begin{aligned} \text{ and }~~\frac{\partial ^{2}EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial \pi _{x}^{2}}&=\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)}\frac{2\beta _{0}}{\pi _{0}}\sigma \sqrt{L}K > 0 \end{aligned}$$
(47)

Observation 12

\(EATCI_{F}^{L}(n, q_{1}, k, \pi _{x}, \pi _{x}, L)\) is convex in \(A_{b}\) for a fixed \(n, q_{1}, L, \pi _{x}, k\).

$$\begin{aligned} \text{ For, }~~ \frac{\partial EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial A_{b}}&=-\frac{\tau }{\delta A_{b}}+\frac{nD(\lambda - 1)}{q_{1}(\lambda ^{n}-1)} \end{aligned}$$
(48)
$$\begin{aligned} \text{ and }~~\frac{\partial ^{2}EATCI_{F}^{L}(n, q_{1}, k, A_{b}, \pi _{x}, L)}{\partial A_{b}^{2}}&=\frac{\tau }{\delta A_{b}^{2} } > 0 \end{aligned}$$
(49)

Appendix 2

As the total cost function of the integrated system is highly non-linear, the convexity of the function for a given L is checked in the distribution free case when logarithmic investment function is adopted. For this case, the Hessian matrix H is given below. The leading principal minors \(H_{55}, H_{44}, H_{33}, H_{22}, H_{11}\) are positive and thus the hessian matrix is positive definite. Thus the solution obtained is globally optimum.

$$\begin{aligned} H&= \left( \begin{array}{ccccc} \frac{\partial ^2EATCI_F^L}{\partial n^2}&{} \frac{\partial ^2EATCI_F^L}{\partial n\partial q_1}&{} \frac{\partial ^2EATCI_F^L}{\partial n\partial k}&{} \frac{\partial ^2EATCI_F^L}{\partial n\partial A_b}&{} \frac{\partial ^2EATCI_F^L}{\partial n\partial \pi _x}\\ \frac{\partial ^2EATCI_F^L}{\partial q_1 \partial n}&{} \frac{\partial ^2EATCI_F^L}{\partial q_1^2}&{} \frac{\partial ^2EATCI_F^L}{\partial q_1\partial k}&{} \frac{\partial ^2EATCI_F^L}{\partial q_1\partial A_b}&{} \frac{\partial ^2EATCI_F^L}{\partial q_1\partial \pi _x}\\ \frac{\partial ^2EATCI_F^L}{\partial k \partial n}&{} \frac{\partial ^2EATCI_F^L}{\partial k\partial q_1}&{} \frac{\partial ^2EATCI_F^L}{\partial k^2}&{} \frac{\partial ^2EATCI_F^L}{\partial k\partial A_b}&{} \frac{\partial ^2EATCI_F^L}{\partial k\partial \pi _x}\\ \frac{\partial ^2EATCI_F^L}{\partial A_b \partial n}&{} \frac{\partial ^2EATCI_F^L}{\partial A_b\partial q_1}&{} \frac{\partial ^2EATCI_F^L}{\partial A_b\partial k}&{} \frac{\partial ^2EATCI_F^L}{\partial A_b^2}&{} \frac{\partial ^2EATCI_F^L}{\partial A_b \partial \pi _x}\\ \frac{\partial ^2EATCI_F^L}{\partial \pi _x \partial n}&{} \frac{\partial ^2EATCI_F^L}{\partial \pi _x\partial q_1}&{} \frac{\partial ^2EATCI_F^L}{\partial \pi _x\partial k }&{} \frac{\partial ^2EATCI_F^L}{\partial \pi _x\partial A_b}&{} \frac{\partial ^2EATCI_F^L}{\partial \pi _x^2}\\ \end{array}\right) \\ H_{55}&=\left| \begin{array}{rrrrr} 1684.7&{} 31.1922&{} 65.3789&{} -0.4597&{} -0.0139\\ 31.1922&{} 0.6862&{} 3.5557&{} -0.0250&{} -0.000758\\ 65.3789&{} 3.5557&{} 309.3898&{} 0&{} -0.000532\\ -0.4597&{} -0.0250&{} 0&{} 1.1952&{} 0\\ -0.0139&{} -0.000758&{} -0.0000532&{} 0&{} 0.0097\\ \end{array}\right| = 542.30; \\ H_{44}&=\left| \begin{array}{rrrr} 1684.7&{} 31.1922&{} 65.3789&{} -0.4597\\ 31.1922&{} 0.6862&{} 3.5557&{} -0.0250\\ 65.3789&{} 3.5557&{} 309.3898&{} 0\\ -0.4597&{}-0.0250&{} 0&{} 1.1952 \end{array}\right| =55924;\\ H_{33}&=\left| \begin{array}{rrr} 1684.7&{} 31.1922&{} 65.3789\\ 31.1922&{} 0.6862&{} 3.5557\\ 65.3789&{} 3.5557&{} 309.3898 \end{array}\right| =46915;\\ H_{22}&=\left| \begin{array}{rr} 1684.7&{} 31.1922\\ 31.1922&{} 0.6862 \end{array}\right| =183.09;\\ H_{11}&= 1684.7. \end{aligned}$$
Fig. 1
figure 1

Inventory pattern of the buyer

Fig. 2
figure 2

Inventory pattern of the vendor

Fig. 3
figure 3

Inventory pattern of the system

Fig. 4
figure 4

Expected total cost vs. number of shipments

Fig. 5
figure 5

Impact of the parameters on the expected total cost

Table 1 Summary of a few related literature
Table 2 Lead time components with data
Table 3 Summarized lead time data
Table 4 Optimal solution for normal distribution case (logarithmic investment)
Table 5 Optimal solution for normal distribution case (power investment)
Table 6 Optimal solution for distribution free case (logarithmic investment)
Table 7 Optimal solution for distribution free case (power investment)
Table 8 Impact of the parameter \(\lambda\) on the optimal policy
Table 9 Impact of the parameter \(\beta _{0}\) on the optimal policy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latha, K.F.M., Kumar, M.G. & Uthayakumar, R. Two echelon economic lot sizing problems with geometric shipment policy backorder price discount and optimal investment to reduce ordering cost. OPSEARCH 58, 1133–1163 (2021). https://doi.org/10.1007/s12597-021-00515-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-021-00515-7

Keywords

Navigation