Skip to main content
Log in

A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this paper we present a simple heuristic algorithm to find high-quality, feasible solutions, for the traveling salesman problem (TSP). We hypothesize, that the quality of the initial solution provided by the proposed heuristic will improve the performance of the subsequent algorithm in terms of number of iterations required to reach a certain level TSP solution. The proposed heuristic does not attempt to compete against known TSP algorithms and heuristics, but instead, should be considered to serve as a “pre-processor”. The method provides a simple framework for testing new node selection and neighborhood rules. The cost matrix of origin and destination pairs is processed in a systematic way starting from a principal diagonal matrix element to find a feasible TSP tour. The matrix reduction, systematic moves in rows and columns, systematic elimination of rows and columns from further consideration, and the “reserved” column declaration, assure that the resulting sequence of nodes and edges forms a complete TSP tour. The process can be repeated from each principal diagonal element. The best TSP tour found can then be used, for example, as an input to another algorithm (e.g. the TABU search, simulated annealing, ant colony optimization, nearest neighbor, or another heuristic) to attempt to improve the tour further. It should be noted, that the proposed technique can also be used for testing of presence of cycles of a proposed solution provided by another algorithm. While the goal of the heuristic algorithm is to attempt to find the optimum tour, optimality cannot be guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Applegate, D., Cook, W., Rohe, A.: Chained Lin–Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)

    Article  Google Scholar 

  2. Basu, S.: Neighborhood reduction strategy for Tabu search implementation in asymmetric traveling salesman problem. Opsearch 49(4), 400–412 (2012). https://doi.org/10.1007/s12597-012-0086-1

    Article  Google Scholar 

  3. Basu, S., Gajulapalli, R.S., Ghosh, D.: A fast Tabu search implementation for large asymmetric traveling salesman problems defined on sparse graphs. Opsearch 50(1), 75–88 (2013). https://doi.org/10.1007/s12597-012-0088-z

    Article  Google Scholar 

  4. Cook, W.: The traveling salesman problem, Department of Combinatorics and Optimization at the University of Waterloo, Canada (website) http://www.math.uwaterloo.ca/tsp/index.html. Accessed 26 June 2018

  5. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4): 393–410 (1954). INFORMS, http://www.jstor.org/stable/166695, Accessed: 06 June 2018

  6. Funke, B., Grünert, T., Irnich, S.: A note on single alternating cycle neighborhoods for the TSP. J. Heuristics 11, 135 (2005). https://doi.org/10.1007/s10732-005-0713-6

    Article  Google Scholar 

  7. Gamboa, D., Rego, C., Glover, F.: Data structures and ejection chains for solving large-scale traveling salesman problems. Eur. J. Oper. Res. 160, 154–171 (2005). https://doi.org/10.1016/j.ejor.2004.04.023

    Article  Google Scholar 

  8. Gamboa, D., Rego, C., Glover, F.: Implementation analysis of efficient heuristic algorithms for the traveling salesman problem. Comput. Oper. Res. 33, 1154–1172 (2006). https://doi.org/10.1016/j.cor.2005.06.014

    Article  Google Scholar 

  9. Gendreau, M., Laporte, G., Semet, F.: A Tabu search heuristic for the undirected selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998). https://doi.org/10.1016/S0377-2217(97)00289-0

    Article  Google Scholar 

  10. Geng, X., Chen, Z., Yang, W., Shi, D., Zhao, K.: Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 11(4), 3680–3689 (2011). https://doi.org/10.1016/j.asoc.2011.01.039

    Article  Google Scholar 

  11. Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discret. Appl. Math. 65, 223–253 (1996). https://doi.org/10.1016/0166-218X(94)00037-E

    Article  Google Scholar 

  12. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)

    Article  Google Scholar 

  13. Glover, F., Laguna, M.: TABU SEARCH: effective strategies for hard problems in analytics and computational science. In: Pardalos, P.M., Du, D.-Z., Graham, R. (eds.) Handbook of Combinatorial Optimization, vol. XXI, 2nd edn, pp. 3261–3362. Kluwer Academic Publishers, Dordrecht (2013). https://doi.org/10.1007/978-1-4419-7997-1_1

    Chapter  Google Scholar 

  14. Halim, A.H., Ismail, I.: Combinatorial optimization: comparison of heuristic algorithms in travelling salesman problem. Arch. Comput. Methods Eng. 26(2), 367–380 (2017). https://doi.org/10.1007/s11831-017-9247-y

    Article  Google Scholar 

  15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 338–355 (1984). https://doi.org/10.1137/0213024

    Article  Google Scholar 

  16. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000). https://doi.org/10.1016/S0377-2217(99)00284-2

    Article  Google Scholar 

  17. Karapetyan, D., Gutin, G.: Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem. Eur. J. Oper. Res. 208(3), 221–232 (2011). https://doi.org/10.1016/j.ejor.2010.08.011

    Article  Google Scholar 

  18. Kanellakis, P.C., Papadimitriou, C.H.: Local search for the asymmetric traveling salesman problem. Oper. Res. 28, 1086–1099 (1980)

    Article  Google Scholar 

  19. Li, H., Alidaee, B.: Tabu search for solving the black-and-white travelling salesman problem. J. Oper. Res. Soc. 67(8), 1061–1079 (2016). https://doi.org/10.1057/jors.2015.122

    Article  Google Scholar 

  20. Lin, S., Kernighan, B.W.: Effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973). https://doi.org/10.1287/opre.21.2.498

    Article  Google Scholar 

  21. Lin, Y., Bian, Z., Liu, X.: Developing a dynamic neighborhood structure for an adaptive hybrid simulated annealing—Tabu search algorithm to solve the symmetrical traveling salesman problem. Appl. Soft Comput. 49, 937–952 (2016). https://doi.org/10.1016/j.asoc.2016.08.036

    Article  Google Scholar 

  22. Pesch, E., Glover, F.: TSP ejection chains. Discret. Appl. Math. 76, 165–181 (1997). https://doi.org/10.1016/S0166-218X(96)00123-0

    Article  Google Scholar 

  23. Rego, C.: Relaxed tours and path ejections for the traveling salesman problem. Eur. J. Oper. Res. 106, 522–538 (1998). https://doi.org/10.1016/S0377-2217(97)00288-9

    Article  Google Scholar 

  24. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: Leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011). https://doi.org/10.1016/j.ejor.2010.09.010

    Article  Google Scholar 

  25. Reinelt, G.: TSPLIB 95 (a database of many TSP problem datafiles. The “Dantzig et al. (1954)” data file is available from this source.), Universität Heidelberg, Institut für Angewandte Mathematik, Germany. https://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html. Accessed 26 June 2018

  26. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary R. Waissi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waissi, G.R., Kaushal, P. A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP. OPSEARCH 57, 73–87 (2020). https://doi.org/10.1007/s12597-019-00396-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-019-00396-x

Keywords

Navigation