Skip to main content
Log in

Uncertainty assessment in the calibration of an auto-compensated laser interferometer system

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Industrial sectors rely heavily on interferometric technique for manufacturing and production. This technique is also commonly utilized for object characterization, investigation, and testing. This work’s goal is to provide a broad review of the state-of-the-art in laser interferometer systems calibration, including a theoretical background measurement of length, as a power technique widely used in industry for direct precision measurement of length and displacement. The essential calibration of laser interferometers at regular intervals ensures the traceability of the measurement chain to the absolute unit of length standard, the meter. The mathematical model equation and measurement method that form the foundation of the uncertainty assessment are explained. The uncertainty assessment is carried out according to JCGM 100:2008-Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement (GUM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The availability of data and material is not applicable as there are no data sets used.

References

  1. H. Takino, Y. Takeuchi, Chiba Institute of Technology 2–17–1 Tsudanuma, Narashino, Chiba 275–0016, Japan, Chubu University, Kasugai, Japan, Machining of Smooth Optical Surfaces by Ultraprecision Milling with Compensated Feeding Mechanisms, Int. J. Autom. Technol. 13 185–190. (2019) https://doi.org/10.20965/ijat.2019.p0185.

  2. G.T. Smith, Machine tool metrology: an Industrial handbook Springer, Cham (2016)

    Book  Google Scholar 

  3. P.K. Kankar, G. Moona, K.A. Desai, Measurement and metrology in advanced manufacturing processes. Mapan 37, 703–705 (2022). https://doi.org/10.1007/s12647-022-00606-w

    Article  Google Scholar 

  4. P. De Groot, J. Biegen, J. Clark, X. Colonna De Lega, D. Grigg, Optical interferometry for measurement of the geometric dimensions of industrial parts. Appl. Opt. 41, 3853 (2002). https://doi.org/10.1364/AO.41.003853

    Article  ADS  Google Scholar 

  5. M. Das, S.K. Ghosh, K. Kumar, E.J. James, M. Singh, A. Kumar, Laser-based optical interferometer manometer design for primary pressure standard in India. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01347-y

    Article  Google Scholar 

  6. Y. Zhang, K.-N. Joo, F. Guzman, Fiber-based two-wavelength heterodyne displacement interferometer, in: Y. Soskind, L.E. Busse (Eds.), Photonic Instrum. Eng. IX, SPIE, San Francisco, United States, p. 41 (2022). https://doi.org/10.1117/12.2609998

  7. N.V. Raghavendra, L. Krishnamurthy, Engineering metrology and measurements, Oxford University Press, New Delhi, (2013)

    Google Scholar 

  8. A.T. Hoang, T.T. Vu, D.Q. Pham, T.T. Vu, T.D. Nguyen, V.H. Tran, High precision displacement measuring interferometer based on the active modulation index control method. Measurement 214, 112819 (2023). https://doi.org/10.1016/j.measurement.2023.112819

    Article  Google Scholar 

  9. T.T. Vu, H.H. Hoang, T.T. Vu, N.T. Bui, A displacement measuring interferometer based on a frequency-locked laser diode with high modulation frequency. Appl. Sci. 10, 2693 (2020). https://doi.org/10.3390/app10082693

    Article  Google Scholar 

  10. P. Hu, J. Zhu, X. Zhai, J. Tan, DC-offset-free homodyne interferometer and its nonlinearity compensation. Opt. Express 23, 8399 (2015). https://doi.org/10.1364/OE.23.008399

    Article  ADS  Google Scholar 

  11. G.N. Vishnyakov, V.L. Minaev, E.V. Shumsky, Homodyne quadrature displacement interferometer. Experimental results. Opt. Spectrosc. 130(5), 327–335 (2022). https://doi.org/10.1134/S0030400X22050058

    Article  ADS  Google Scholar 

  12. T. Podżorny, G. Budzyń, J. Rzepka, Linearization methods of laser interferometers for pico/nano positioning stages. Optik 124, 6345–6348 (2013). https://doi.org/10.1016/j.ijleo.2013.05.054

    Article  ADS  Google Scholar 

  13. Y. Qian, J. Li, Q. Feng, Q. He, F. Long, Error analysis of heterodyne interferometry based on one single-mode polarization-maintaining fiber. Sensors 23, 4108 (2023). https://doi.org/10.3390/s23084108

    Article  ADS  Google Scholar 

  14. H. Nozato, W. Kokuyama, A. Ota, Improvement and validity of shock measurements using heterodyne laser interferometer. Measurement 77, 67–72 (2016). https://doi.org/10.1016/j.measurement.2015.08.037

    Article  ADS  Google Scholar 

  15. M. Pisani, A homodyne Michelson interferometer with sub-picometer resolution. Meas. Sci. Technol. 20, 084008 (2009). https://doi.org/10.1088/0957-0233/20/8/084008

    Article  ADS  Google Scholar 

  16. G. Dai, X. Hu, Correction of interferometric high-order nonlinearity error in metrological atomic force microscopy. Nanomanufact. Metrol. 5, 412–422 (2022). https://doi.org/10.1007/s41871-022-00154-6

    Article  Google Scholar 

  17. E. Zhang, B. Chen, H. Zheng, X. Teng, Laser heterodyne interference signal processing method based on phase shift of reference signal. Opt. Express 26, 8656 (2018). https://doi.org/10.1364/OE.26.008656

    Article  ADS  Google Scholar 

  18. P. Hu, J. Wang, X. Lin, X. Xing, H. Fu, J. Tan, Phase measurement method based on digital dual frequency comb for high-precision high-speed heterodyne interferometry. IEEE Sens. J. 23, 9707–9715 (2023). https://doi.org/10.1109/JSEN.2023.3262281

    Article  ADS  Google Scholar 

  19. Y. Wang, Y. Bai, Y. Lu, P. Hu, Z. Li, The next generation heterodyne laser interferometer in joule balance. IEEE Trans. Instrum. Meas. 72, 1–8 (2023). https://doi.org/10.1109/TIM.2023.3276013

    Article  Google Scholar 

  20. L.C. Lipus, G. Budzyn, B. Acko, Analysis of laser interferometer measurement uncertainty by simulating error sources. Int. J. Simul. Model. 20, 339–350 (2021). https://doi.org/10.2507/IJSIMM20-2-563

    Article  Google Scholar 

  21. Z. Buchta, M. Šarbort, M. Čížek, V. Hucl, Š Řeřucha, T. Pikálek, Š Dvořáčková, F. Dvořáček, J. Kůr, P. Konečný, M. Weigl, J. Lazar, O. Číp, System for automatic gauge block length measurement optimized for secondary length metrology. Precis. Eng. 49, 322–331 (2017). https://doi.org/10.1016/j.precisioneng.2017.03.002

    Article  Google Scholar 

  22. V. Zivkovic, S. Zelenika, G. Stefanovic, Uncertainty evaluation for the gauge blocks calibration using the modified DMDM gauge block interferometer. Int. J. Metrol. Qual. Eng. 3, 19–27 (2012). https://doi.org/10.1051/ijmqe/2012001

    Article  Google Scholar 

  23. A. Winarno, S. Takahashi, A. Hirai, K. Takamasu, H. Matsumoto, Absolute measurement of gauge block without wringing using tandem low-coherence interferometry. Meas. Sci. Technol. 23, 125001 (2012). https://doi.org/10.1088/0957-0233/23/12/125001

    Article  ADS  Google Scholar 

  24. S.J.A.G. Cosijns, M.J. Jansen, H. Haitjema, Advanced optical incremental sensors: encoders and interferometers, in Smart sensors and MEMS, 2nd edn., ed. by S. Nihtionov, A. Luque (Elsevier Inc., Duxshire, UK, ), pp.245–290, (2018)

    Chapter  Google Scholar 

  25. D. Flack and J. Hannaford, Fundamental Good Practice in Dimensional Metrology. In: NPL Good Practice Guide No. 80, National Physical Laboratory, 2012.

  26. E. Hecht, Optics, 5th edn. (Pearson Education Inc, Boston, (2017)

    Google Scholar 

  27. A. Hirai, M. Kajima, and S. Telada, Displacement. In Handbook of Optical Metrology: Principles and Applications, 2nd ed.; Toru Yoshizawa, CRC Press, NPO3D Associates, Yokohama, Japan, 2017, pp. 433–449. https://doi.org/10.1201/b18328.

  28. P. Hariharan, Basics of interferometry. Elsevier (2007). https://doi.org/10.1016/B978-0-12-373589-8.X5000-7

    Article  ADS  Google Scholar 

  29. W. R. C Rowley, Analysis of laser frequency stability by heterodyne measurement, NPL Report MOM 78, (1986)

  30. B. Samoudi, M.M. Pérez, S. Ferreira-Barragáns, E. Prieto, Absolute optical frequency measurements of iodine-stabilized He-Ne laser at 633 nm by using a femtosecond laser frequency comb. Int. J. Metrol. Qual. Eng. 3, 101–106 (2012). https://doi.org/10.1051/ijmqe/2012012

    Article  Google Scholar 

  31. B. Samoudi, Realisation of the metre by using a femtosecond laser frequency comb: applications in optical frequency metrology. Int. J. Metrol. Qual. Eng. 8, 16 (2017). https://doi.org/10.1051/ijmqe/2017008

    Article  Google Scholar 

  32. M. Jewariya, Optical Frequency Comb: A Novel Ruler of Light for Realization of SI Unit Meter, in: D.K. Aswal, S. Yadav, T. Takatsuji, P. Rachakonda, H. Kumar (Eds.), Handb. Metrol Appl., Springer Nature Singapore, Singapore, pp. 219–234 (2023) https://doi.org/10.1007/978-981-99-2074-7_13

  33. T.J. Quinn, Practical realization of the definition of the metre (1997). Metrologia 36, 211–244 (1999). https://doi.org/10.1088/0026-1394/36/3/7

    Article  ADS  Google Scholar 

  34. B. Edlén, The refractive index of air. Metrologia 2, 71–80 (1966). https://doi.org/10.1088/0026-1394/2/2/002

    Article  ADS  Google Scholar 

  35. K.P. Birch, M.J. Downs, An updated edlén equation for the refractive index of air. Metrologia 30, 155–162 (1993). https://doi.org/10.1088/0026-1394/30/3/004

    Article  ADS  Google Scholar 

  36. K.P. Birch, M.J. Downs, Correction to the updated edlén equation for the refractive index of air. Metrologia 31, 315–316 (1994). https://doi.org/10.1088/0026-1394/31/4/006

    Article  ADS  Google Scholar 

  37. BIPM, Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM 100 (2008).

  38. H. Haitjema, Calibration of displacement laser interferometer systems for industrial metrology. Sensors 19, 4100 (2019). https://doi.org/10.3390/s19194100

    Article  ADS  Google Scholar 

  39. T.J. Quinn, Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40, 103–133 (2003). https://doi.org/10.1088/0026-1394/40/2/316

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.S. and O.B.: methodology and writing the main manuscript text. B.S.: prepared all figures included in the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to B. Samoudi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests in financial or personal nature.

Ethical approval

Fortunately, there are no ethical concerns associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoudi, B., Bendaou, O. Uncertainty assessment in the calibration of an auto-compensated laser interferometer system. J Opt (2024). https://doi.org/10.1007/s12596-024-01805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01805-1

Keywords

Navigation