Skip to main content
Log in

Optical fiber sensors coated with GO/PANI nanocomposite integrating a microcontroller-based acquisition and processing system

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An etched-tapered silica multimode optical fiber (ETMMF) sensing platform is reported as a sensor for ethanol detection with remote monitoring for industrial applications. The MMF is modified by chemical etching followed by the tapering process inside a part of the etched area to improve its sensitivity to the surroundings. The sensor is coated with graphene oxide (GO)/Polyaniline (PANI) nanocomposites as a sensing layer by the drop cast method. Ethanol is used with a concentration range of 0.1–40%. The light emitted will undergo some losses due to the GO/PANI absorbance increase. The optical response will be detected by the photodetector and converted to digital form using an analog to digital converter to display the measurement on a computer under the control of a microcontroller and PC. The developed system uses optical fiber to adapt to real-time remote monitoring applications over two way100 m. The sensor optical response, response and recovery times, repeatability, resolution limit, selectivity coefficient, and selectivity are investigated. The ETMMF sensor showed response and recovery times of 16 and 22 s, respectively, with − 2.43/vol% sensitivity. The ETMMF ethanol sensor exhibited a considerably fast response and is highly stable and reversible. Hence, it is a potentially excellent candidate for industrial applications and SCADA systems. The use of ETMMF as a sensing platform for aqueous detection, in general, and ethanol particularly, has yet to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Kumar, O. Prakash, S. Agrawal, R. Mahakud, A. Mokhariwale, S. Dixit, S.V. Nakhe, Distributed fiber Bragg grating sensor for multipoint temperature monitoring up to 500 °C in high-electromagnetic interference environment. Opt. Eng. 55, 090502 (2016)

    Article  ADS  Google Scholar 

  2. P. Kumar, S. Kumar, J. Kumar, G.S. Purbia, O. Prakash, S.K. Dixit, Graphene-oxide-coated fiber Bragg grating sensor for ethanol detection in petrol. Meas. Sci. Technol. 31(2), 025109 (2019)

    Article  ADS  Google Scholar 

  3. H.A. Mohammed, B. Adel Esttaifan, M.H. Yaacob, Highly sensitive fiber Bragg grating based gas sensor integrating polyaniline nanofiber for remote monitoring. Opt. Fiber Technol. 71, 102901 (2022)

    Article  CAS  Google Scholar 

  4. J. Lin, Recent development and applications of optical and fiber-optic pH sensors. TrAC Trends Anal. Chem. 19, 541–552 (2000)

    Article  CAS  Google Scholar 

  5. V. Sharma, K. Singh, R. Gupta, A. Joshi, R. Dubey, V. Gupta, S. Bharadwaj, M. Zafar, S. Bajpai, A. Khan, A. Srivastava, D. Pathak, S. Biswas, Review of structural health monitoring techniques in pipeline and wind turbine industries. Appl. Syst. Innov. 4, 59 (2021)

    Article  Google Scholar 

  6. K. Maes, L. Meerbeeck, E. Reynders, G. Lombaert, Validation of vibration-based structural health monitoring on retrofitted railway bridge KW51. Mech. Sys. Signal Process 165, 108380 (2022)

    Article  Google Scholar 

  7. S. Abdullah, J. Hussein, H. Mohammed, Design considerations of laser source in a ring network based on fiber distributed data interface (FDDI). IJL 1, 39–46 (2002)

    Google Scholar 

  8. H.A. Mohammed, M.H.A. Bakar, S.B.A. Anas, M.A. Mahdi, M.H. Yaacob, Real time in situ remote monitoring for cladding modified SMF integrating nanocomposite based ammonia sensors deploying EDFA. IEEE Access 9, 145282–145287 (2021)

    Article  Google Scholar 

  9. A. Urrutia, J. Goicoechea, F. Arregui, Optical fiber sensors based on nanoparticle-embedded coatings. J. Sens. 2015, 18 (2015)

    Article  Google Scholar 

  10. M. Hernaez, C.R. Zamarreño, S. Melendi-Espina, L.R. Bird, A.G. Mayes, F. Arregui, Optical fibre sensors using graphene-based materials: a review. Sensors 17(1), 155 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. H. Mohammed, M.H. Abu Bakar, S.B. Ahmad Anas, M.A. Mahdi, S. Girei, Performance evaluations of ammonia sensors using cladding modified single-mode optical fiber coated with polyaniline nanofibers. Int. J. Nanosci. Nanotechnol. 18, 135–141 (2022)

    CAS  Google Scholar 

  12. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  13. L. Gao, C. Yin, Y. Luo, G. Duan, Facile synthesis of the composites of polyaniline and TiO2 nanoparticles using self-assembly method and their application in gas sensing. Nanomaterials 9(4), 493 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. V. Inderan, M.M. Arafat, A.S.M.A. Haseeb, K. Sudesh, H.L. Lee, Electrospun (nickel and palladium) tin(IV) oxide/polyaniline/polyhydroxy-3-butyrate biodegradable nanocomposite fibers for low temperature ethanol gas sensing. Nanotechnology 31(42), 425503 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. H.Y. Hammod, T.J. Mossa, Influence of optical fiber diameters on the performance of surface plasmon resonance sensor. Baghdad Sci. J. 19(6), 1544 (2022)

    Article  Google Scholar 

  16. N. An, C. Qin, Y. Li, T. Tan, Z. Yuan, H. Zhang, Y. Wu, B. Yao, Y. Rao, Graphene-fiber biochemical sensors: principles, implementations, and advances. Photonic Sens. 11, 123–139 (2021)

    Article  ADS  CAS  Google Scholar 

  17. Y. Zhang, L. Zhou, D. Qiao, M. Liu, H. Yang, C. Meng, T. Miao, J. Xue, Y. Yao, Progress on optical fiber biochemical sensors based on graphene. Micromachines 13(3), 348 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  18. A.M. Abdul Hussein, S.A. Abdullah, M. Rasheed, R.S. Zamel, Optical and electrical properties of glass/graphene oxide thin films. Iraqi J. Phys. 18(47), 73–83 (2020)

    Article  Google Scholar 

  19. S. Memon, R. Wang, B. Strunz, B. Chowdhry, J. Pembroke, E. Lewis, A review of optical fibre ethanol sensors: current state and future prospects. Sensor. 22(3), 950 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. Liao, F. Zhu, P. Zhou, Y. Wang, Fiber taper-based mach-zehnder interferometer for ethanol concentration measurement. Micromachines 10(11), 741 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. P. Tiwary, S.G. Chatterjee, S.S. Singha, R. Mahapatra, A. Chakraborty, Room temperature ethanol sensing by chemically reduced graphene oxide film. FlatChem 30, 100317 (2021)

    Article  CAS  Google Scholar 

  22. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B: Chem. 178, 485–493 (2013)

    Article  CAS  Google Scholar 

  23. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 13(2), 777–782 (2013)

    Article  ADS  CAS  Google Scholar 

  24. S. Sinha, B.P. Swain, Investigation of PANI/Graphene for gas sensor applications, in Nanostructured materials and their applications. ed. by B.P. Swain (Springer, New York, 1973), p.197

    Google Scholar 

  25. J. Das, B. Saha, S. Chakraborty, K. Deb, D. Das, A low-cost flexible material system made of PANI/Graphite for resistive detection and quantitative determination of urea. Mat. Chem. Phy. 301, 127573 (2023)

    Article  CAS  Google Scholar 

  26. A. Airoudj, D. Debarnot, B. Beche, F. Poncin-Epaillard, Design and sensing properties of an integrated optical gas sensor based on a multilayer structure. Anal. Chem. 80, 23 (2008)

    Article  Google Scholar 

  27. M. A. A. Rosli, P. Arasu, H. N. Lim, A. S. M. Noor, Dynamic response of tapered optical fiber coated with graphene oxide for detecting aqueous ethanol. IEEE 6th International Conference on Photonics (2016).

  28. S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, H. Lee, Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci. Rep. 3(1), 1868 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. S. Girei, A.A.A. Shabaneh, H. Lim, M.N. Hamidon, M.A. Mahdi, M. Yaacob, Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water. Opt. Rev. 22, 385–392 (2015)

    Article  CAS  Google Scholar 

  30. S.H. Girei, A.A. Shabaneh, H.M. Lim, N.H. Huang, M.A. Mahdi, M.H. Yaacob, Absorbance response of graphene oxide coated on tapered multimode optical fiber towards liquid ethanol. J. Euro. Opt. Soc. Rapid Publ. 10, 15019 (2015)

    Article  Google Scholar 

  31. H. Mohammed, Transmission of a multiplexed eight channels subcarrier optically intensity modulated based on microcontroller. J. Eng. 15(2), 3633–3640 (2009)

    Article  Google Scholar 

  32. M. Zhao, X. Wang, J. Cheng, L. Zhang, J. Jia, X.J. Li, Synthesis and ethanol sensing properties of Al-doped ZnO nanofibers. Curr. Appl. Phys. 13(2), 403–407 (2013)

    Article  ADS  Google Scholar 

  33. A. Aziz, H. Lim, S. Girei, H. Ming, M. Yaacob, M.A. Mahdi, A. Pandikumar, Silver/Graphene nanocomposite modified optical fiber sensor platform for ethanol detection in water medium. Sens. Actuators B Chem. 206, 119–125 (2014)

    Google Scholar 

  34. W. Jin, H.L. Ho, Y. Cao, J. Ju, L. qi, Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 19(6), 741–759 (2013)

    Article  ADS  CAS  Google Scholar 

  35. Y. Xiong, J. Xu, J.-W. Wang, Y. Guan, A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+. Anal. Bioanal. Chem. 394, 919–923 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. K. Khun, A. Mahajan, R. Bedi, SnO2 thick films for room temperature gas sensing applications. J. Appl. Phys. 106(12), 124509 (2009)

    Article  ADS  Google Scholar 

  37. Y. Chang, Y. Yao, B. Wang, H. Luo, T. Li, L. Zhi, Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J. Mater. Sci. Technol. 29(2), 157–160 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husam A. Mohammed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, H.A. Optical fiber sensors coated with GO/PANI nanocomposite integrating a microcontroller-based acquisition and processing system. J Opt (2024). https://doi.org/10.1007/s12596-024-01712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01712-5

Keywords

Navigation