Skip to main content
Log in

Ultra-narrow linewidth micro-ring resonator for optical notch filter and methane sensing applications

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An ultra-narrow linewidth micro-ring resonator (MRR) optical notch filter, utilising grating-in-ring design in TiO\(_2\) core waveguide, with resonance in the near-infrared (NIR) regime of spectrum is reported. The waveguide gap and their thickness have been thoroughly optimized to achieve ultra-narrow linewidth, \(\sim\)21 pm, and considerably large extinction ratio (ER), \(\sim\)50 dB, of the through-port transmission spectrum. The extinction ratio and linewidth of the output characteristics are appropriate to filter out the wavelength with high precision. The significance of these filters has also been highlighted in light of the wide range of uses of NIR lasers. As a possible sensor, we analyse the MRRs methane gas sensing characteristics using finite-difference time domain simulation, where the grating structure inside the ring waveguide has been used to enhance the modal field in the sensing region. To augment sensors specificity towards methane gas molecules, we have considered a methane-sensitive ultraviolet-curable fluoro-siloxane (UVCFS) layer over the sensor surface. The grating-in ring MRR shows a maximum sensitivity of \(-\)0.61 nm/% (v/v) of CH\(_4\) in UVCFS layer with TM-like polarized mode field source. The spectral shift at different concentrations of methane gas has been calculated using the relation between the refractive index (RI) of UVCFS layer and methane gas concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.O.F. Carvalho, J.R. Mejía-Salazar, Magneto-optical micro-ring resonators for dynamic tuning of add/drop channels in dense wavelength division multiplexing applications. Opt. Lett. 46(10), 2396–2399 (2021). https://doi.org/10.1364/OL.425595

    Article  ADS  PubMed  Google Scholar 

  2. A. Shafiee, S. Banerjee, K. Chakrabarty, S. Pasricha, M. Nikdast, Loci: An analysis of the impact of optical loss and crosstalk noise in integrated silicon-photonic neural networks. In: proceedings of the great lakes symposium on VLSI 2022, pp. 351–355 (2022)

  3. L. Castelló-Pedrero, M.I. Gómez-Gómez, D. Zurita, J. García-Rupérez, A. Griol, A. Martínez, 1310 nm tm grating couplers to operate silicon nitride ring resonator biosensors. Results Opt. 11, 100418 (2023)

    Article  Google Scholar 

  4. S. Kumari, Y.K. Verma, S.M. Tripathi, Plasmonic ring resonator sensor with high sensitivity and enhanced figure of merit using an ag-si-ag bus waveguide. IEEE Trans. Nanotechnol. 22, 200–205 (2023)

    Article  ADS  CAS  Google Scholar 

  5. Y.K. Verma, S. Kumari, G. Bawa, S.M. Tripathi, Temperature insensitive large free spectral range micro-ring resonator. Opt. Quant. Electron. 54(12), 839 (2022). https://doi.org/10.1007/s11082-022-04266-7

    Article  CAS  Google Scholar 

  6. M.A. Hamdani, G. Qazi, Modelling and theoretical analysis of a novel common mirror based silicon photonic michelson modulator. Opt. Quant. Electron. 55(1), 41 (2023)

    Article  CAS  Google Scholar 

  7. Y. Okawachi, M. Yu, K. Luke, D.O. Carvalho, M. Lipson, A.L. Gaeta, Quantum random number generator using a microresonator-based kerr oscillator. Opt. Lett. 41(18), 4194–4197 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. A. Shafiee, S. Pasricha, M. Nikdast, A survey on optical phase-change memory: the promise and challenges. IEEE Access 11, 11781–11803 (2023). https://doi.org/10.1109/ACCESS.2023.3241146

    Article  Google Scholar 

  9. M.A. Hamdani, G. Qazi, Evaluating variability and improving tolerance in a novel and compact silicon photonic michelson interferometer. Silicon 14(15), 9945–9958 (2022)

    Article  CAS  Google Scholar 

  10. P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M.G. Tanner, C.M. Natarajan, Chip-based quantum key distribution. Nature commun 8(1), 13984 (2017)

    Article  ADS  CAS  Google Scholar 

  11. P. Xing, D. Ma, L.C. Kimerling, A.M. Agarwal, D.T. Tan, High efficiency four wave mixing and optical bistability in amorphous silicon carbide ring resonators. APL Photon 5(7), 076110 (2020)

    Article  ADS  CAS  Google Scholar 

  12. P.P. Absil, J.V. Hryniewicz, B.E. Little, P.S. Cho, R.A. Wilson, L.G. Joneckis, P.-T. Ho, Wavelength conversion in gaas micro-ring resonators. Opt. Lett. 25(8), 554–556 (2000). https://doi.org/10.1364/OL.25.000554

    Article  ADS  CAS  PubMed  Google Scholar 

  13. J. Park, S.K. Ozdemir, F. Monifi, T. Chadha, S.H. Huang, P. Biswas, L. Yang, Titanium dioxide whispering gallery microcavities. Adv. Opt. Mater. 2(8), 711–717 (2014)

    Article  CAS  Google Scholar 

  14. J.D. Bradley, C.C. Evans, J.T. Choy, O. Reshef, P.B. Deotare, F. Parsy, K.C. Phillips, M. Lončar, E. Mazur, Submicrometer-wide amorphous and polycrystalline anatase tio 2 waveguides for microphotonic devices. Opt. Express 20(21), 23821–23831 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. G. Reich, Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 57(8), 1109–1143 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. I. Martinić, S.V. Eliseeva, S. Petoud, Near-infrared emitting probes for biological imaging: organic fluorophores, quantum dots, fluorescent proteins, lanthanide (iii) complexes and nanomaterials. J. Lumines. 189, 19–43 (2017)

    Article  ADS  Google Scholar 

  17. D.L. Howard, H.G. Kjaergaard, J. Huang, M. Meuwly, Infrared and near-infrared spectroscopy of acetylacetone and hexafluoroacetylacetone. J. Phys. Chem. A 119(29), 7980–7990 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. S. Ghosh, S. Cherumukkil, C.H. Suresh, A. Ajayaghosh, A supramolecular nanocomposite as a near-infrared-transmitting optical filter for security and forensic applications. Adv. Mater. 29(46), 1703783 (2017)

    Article  Google Scholar 

  19. B. Sana, A. Finne-Wistrand, D. Pappalardo, Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mater. Today Chem. 25, 100963 (2022)

    Article  CAS  Google Scholar 

  20. S. Chinnathambi, N. Shirahata, Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20(1), 337–355 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Costil, S. Lukat, C. Langlade, C. Coddet, Surface modification of ceramic matrix composites induced by laser treatment. Appl. Surface Sci. 255(5), 2425–2432 (2008)

    Article  ADS  CAS  Google Scholar 

  22. M. Straub, M. Afshar, D. Feili, H. Seidel, K. König, Efficient nanostructure formation on silicon surfaces and in indium tin oxide thin films by sub-15 fs pulsed near-infrared laser light. Phys. Proced. 12, 16–23 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Z. Zhang, Z. Wang, Z. Xu, Q. Gao, P. Liu, J. Ren, M. Li, C. Zhou, Q. Liao, H. Fu, Soft lithography to fabricate 3d patterning organic microrings towards high-performance near-infrared laser arrays. Adv. Opt. Mater. 6(16), 1800219 (2018)

    Article  Google Scholar 

  24. R.A. Alvarez, D. Zavala-Araiza, D.R. Lyon, D.T. Allen, Z.R. Barkley, A.R. Brandt, K.J. Davis, S.C. Herndon, D.J. Jacob, A. Karion, Assessment of methane emissions from the us oil and gas supply chain. Science 361(6398), 186–188 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Shemshad, S.M. Aminossadati, M.S. Kizil, A review of developments in near infrared methane detection based on tunable diode laser. Sens. Actuat. B Chem. 171, 77–92 (2012)

    Article  Google Scholar 

  26. Y. Ben-Ali, I. El Kadmiri, Y. Errouas, Z. Rahou, D. Bria, High sensibility optical methane sensor based on insertion of cryptophane-e cavity in 1d photonic crystal. Opt. Memory Neural Netw. 31(4), 403–412 (2022)

    Article  Google Scholar 

  27. H. Liu, X. Zhang, B. Zhao, B. Wu, H. Zhang, S. Tang, Simultaneous measurements of refractive index and methane concentration through electromagnetic fano resonance coupling in all-dielectric metasurface. Sensors 21(11), 3612 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, W. Chen, Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane a overlay deposition. Sens. Actuat. B Chem. 207, 477–480 (2015)

    Article  CAS  Google Scholar 

  29. X. Liu, B. Shen, L. Jiang, H. Yang, C. Jin, T. Zhou, Study on saw methane sensor based on cryptophane-a composite film. Micromachines 14(2), 266 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  30. J.R. DeVore, Refractive indices of rutile and sphalerite. JOSA 41(6), 416–419 (1951)

    Article  ADS  CAS  Google Scholar 

  31. D.E. McCoy, A.V. Shneidman, A.L. Davis, J. Aizenberg, Finite-difference time-domain (fdtd) optical simulations: a primer for the life sciences and bio-inspired engineering. Micron 151, 103160 (2021). https://doi.org/10.1016/j.micron.2021.103160

    Article  PubMed  Google Scholar 

  32. M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, A. Abdelghani, Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules. Sens. Actuat. B Chem. 107(1), 32–39 (2005)

    Article  CAS  Google Scholar 

  33. J. Yang, L. Zhou, X. Che, J. Huang, X. Li, W. Chen, Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane a. Sens. Actuat. B Chem. 235, 717–722 (2016)

    Article  CAS  Google Scholar 

  34. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D.M. Ratner, L. Chrostowski, K.C. Cheung, Sub-wavelength grating for enhanced ring resonator biosensor. Optics express 24(14), 15672–15686 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. B.H. Sang, T.-I. Jeon, Pressure-dependent refractive indices of gases by thz time-domain spectroscopy. Opt. Express 24(25), 29040–29047 (2016). https://doi.org/10.1364/OE.24.029040

    Article  ADS  CAS  PubMed  Google Scholar 

  36. R. Rollefson, R. Havens, Index of refraction of methane in the infra-red and the dipole moment of the ch bond. Phys. Rev. 57, 710–717 (1940). https://doi.org/10.1103/PhysRev.57.710

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Yogesh Kumar Verma is thankful to the Indian Institute of Technology Kanpur, India for the institute fellowship.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar Verma.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, Y.K., Tripathi, S.M. Ultra-narrow linewidth micro-ring resonator for optical notch filter and methane sensing applications. J Opt (2024). https://doi.org/10.1007/s12596-024-01702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01702-7

Keywords

Navigation