Skip to main content
Log in

Simulation study of solar cell with a double absorber layers of perovskites material using lead and lead-free material

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Numerical simulations of lead-free perovskite solar cells have harvested significant attention within the scientific community. In particular, the all-inorganic compounds FASnI3 and Cs2TiBr6 have emerged as promising materials, boasting favorable optical and electrical properties and remarkable stability under various environmental conditions. These perovskite-like materials have been extensively explored as light-absorbing layers for the development of lead-free perovskite solar cells. In our study, we have presented a numerical simulation of lead-free perovskite solar cells using the following device architecture: FTO/ZnO/FASnI3/Cs2TiBr6/PEDOT/PSS/Spiro-OMeTAD/Au. Our optimization efforts focused on fine-tuning the thicknesses of the electron transport layer (ETL), light absorber layers, and hole transport layer (HTL) to achieve the highest possible efficiency. Through these optimizations, we achieved remarkable results, with the optimized lead-free perovskite solar cells demonstrating an impressive efficiency of 41.70%, as determined using the SCAPS-1D simulation software. Additionally, we explored the impact of series and shunt resistance on solar cell performance, gaining valuable insights that can inform the design of future perovskite solar cells. Our study provides significant contributions to the field, offering a pathway toward enhancing the efficiency of perovskite solar cells and further advancing the field of renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will made available upon reasonable request to the corresponding author.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 13, 6050–6051 (2009)

    Article  Google Scholar 

  2. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S. Shao, M. Abdu-Aguye, L. Qiu, L.-H. Lai, J. Liu, S. Adjokatse, F. Jahani, M.E. Kamminga, G.H. ten Brink, T.T.M. Palstra, B.J. Kooi, J.C. Hummelen, M.A. Loi, Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative. Energy Environ. Sci. 9, 2444 (2016)

    Article  CAS  Google Scholar 

  4. J. Song, L. Liu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J. Mater. Chem. A 5, 13439–13447 (2017)

    Article  CAS  Google Scholar 

  5. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, € Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Song, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 144, 623–630 (2016)

    Article  CAS  Google Scholar 

  7. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604. (Epub 2012 Oct 4 PMID: 23042296)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Efficient hybrid solar cells based on meso-super structured organometal halide perovskites. Nature 499, 316 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934 (2014)

    Article  CAS  Google Scholar 

  10. W. Nie, H. Tsai, R. Asadpour, J. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H. Wang, A.D. Mohite, High-efficiencysolution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. J. Song, E. Zheng, L. Liu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, Magnesiumdoped zinc oxide as electron selective contact layers for efficient perovskite solar cells. Chemsuschem 9, 2640–2647 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. National renewable energy laboratory, Best research cell efficiency, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf (2019)

  13. J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30(11), 1705596 (2018). https://doi.org/10.1002/adma.201705596

    Article  CAS  Google Scholar 

  14. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Z. Shi, A.H. Jayatissa, Perovskites-based solar cells: a review of recent progress materials and processing methods. Materials 11(5), 729 (2018). https://doi.org/10.3390/ma11050729

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm, J. Gu, X.C. Zeng, Y. Zhou, N.P. Padture, CesiumTitanium(IV) bromide thin films based stable leadfree perovskite solar cells. Joule 2(3), 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009

    Article  CAS  Google Scholar 

  17. J. Euvrard, X. Wang, T. Li, Y. Yan, D.B. Mitzi, Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications? J. Mater. Chem. A 8(7), 4049–4054 (2020). https://doi.org/10.1039/C9TA13870F

    Article  CAS  Google Scholar 

  18. J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323

    Article  ADS  CAS  PubMed  Google Scholar 

  19. J.L. Mendes, W. Gao, J.L. Martin, A.D. Carl, N.A. Deskins, S. Granados-Focil, R.L. Grimm, Interfacial states, energetics, and atmospheric stability of large-grain antifluorite Cs2TiBr6. J. Phys. Chem. C 124(44), 24289–24297 (2020). https://doi.org/10.1021/acs.jpcc.0c08719

    Article  CAS  Google Scholar 

  20. M.-G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N.P. Padture, X.C. Zeng, Toward eco-friendly and stable perovskite materials for photovoltaics. Joule 2(7), 1231–1241 (2018). https://doi.org/10.1016/j.joule.2018.04.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Marc Burgelman from the University of Gent, Belgium, for generously providing the SCAPS-1D software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Shukla.

Ethics declarations

Conflict of interest

The authors affirm that there are no known financial interests or personal relationships that might have influenced the work presented in this paper. The authors assert that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R.K., Srivastava, A., Rani, S. et al. Simulation study of solar cell with a double absorber layers of perovskites material using lead and lead-free material. J Opt (2024). https://doi.org/10.1007/s12596-024-01678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01678-4

Keywords

Navigation