Skip to main content
Log in

10 Gbps optical wireless communication system using laser diodes in coastal water environment

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Nowadays, underwater optical wireless communication (UOWC) has gained more attention because it provides long-distance high data-rate transmission, which has high transmission bandwidth compared to acoustic communication and radio frequency communication system. Here, we have proposed and demonstrated an UOWC architecture using 450 nm blue laser diode (LD), 520 nm green LD and 650 nm red LD as optical transmitter using on–off keying non-return-to-zero modulation scheme. A record high data rate up to 10 Gbps over 38 m distance for green LD, 34 m distance for blue LD and 28 m distance for red LD for coastal water is successfully transmitted in the proposed system. The bit error rate of the transmitted data is found to be 2.3×\({10}^{-9}\) over 38 m distance for green LD, 1.31×\({10}^{-9}\) over 34 m distance for blue LD and 3.01×\({10}^{-9}\) over 28 m distance for red LD. A very good Q value as well as an excellent open eye diagram has been achieved. So, the proposed system is suitable for UOWC with high data-rate transmission for coastal ocean water over significantly long distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that supports the findings of this study is available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. C. Shen, Y. Guo, H.M. Oubei, T.K. Ng, G. Liu, K.H. Park, K.T. Ho, M.S. Alouini, B.S. Ooi, Opt. express 24(22), 25502–25509 (2016). https://doi.org/10.1364/OE.24.025502

    Article  CAS  PubMed  ADS  Google Scholar 

  2. X. Liu, S. Yi, X. Zhou, Z. Fang, Z.J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, P. Tian, Opt. express 25(22), 27937–27947 (2017). https://doi.org/10.1364/OE.25.027937

    Article  CAS  PubMed  ADS  Google Scholar 

  3. H.M. Oubei, J.R. Duran, B. Janjua, H.Y. Wang, C.T. Tsai, Y.C. Chi, T.K. Ng, H.C. Kuo, J.H. He, M.S. Alouini, G.R. Lin, Opt. express 23(18), 23302–23309 (2015). https://doi.org/10.1364/OE.23.023302

    Article  CAS  PubMed  ADS  Google Scholar 

  4. M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, J. Xu, Opt. Express 25(17), 20829–20834 (2017). https://doi.org/10.1364/OE.25.020829

    Article  CAS  PubMed  ADS  Google Scholar 

  5. H.M. Oubei, C. Li, K.H. Park, T.K. Ng, M.S. Alouini, B.S. Ooi, Opt. express 23(16), 20743–20748 (2015). https://doi.org/10.1364/OE.23.020743

    Article  CAS  PubMed  ADS  Google Scholar 

  6. X. Chen, W. Lyu, Z. Zhang, J. Zhao, J. Xu, Opt. Express 28(16), 23784–23795 (2020). https://doi.org/10.1364/OE.399794

    Article  PubMed  ADS  Google Scholar 

  7. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, J. Xu, Opt. express 25(13), 14760–14765 (2017). https://doi.org/10.1364/OE.25.014760

    Article  PubMed  ADS  Google Scholar 

  8. J. Wang, C. Lu, S. Li, Z. Xu, Opt. Express 27(9), 12171–12181 (2019). https://doi.org/10.1364/OE.27.012171

    Article  CAS  PubMed  ADS  Google Scholar 

  9. C. Fei, Y. Wang, J. Du, R. Chen, N. Lv, G. Zhang, J. Tian, X. Hong, S. He, Opt.Express 30(2), 2326–2337 (2022). https://doi.org/10.1364/OE.448448

    Article  PubMed  ADS  Google Scholar 

  10. X. Hong, J. Du, Y. Wang, R. Chen, J. Tian, G. Zhang, J. Zhang, C. Fei, S. He, IEEE Access 10, 47814–47823 (2022). https://doi.org/10.1109/ACCESS.2022.3170889

    Article  Google Scholar 

  11. S.A. Adnan, H.A. Hassan, A. Alchalaby, A.C. Kadhim, Int. J. Design Nature Ecodyn. 16(2), 219–226 (2021). https://doi.org/10.18280/ijdne.160212

    Article  Google Scholar 

  12. L.J. Johnson, F. Jasman, R.J. Green, M.S. Leeson, Underw. Technol. 32(3), 167–175 (2014)

    Article  Google Scholar 

  13. G. Schirripa, K. Spagnolo, L. Cozzella, F. Leccese, Sensors 20(8), 2261 (2020). https://doi.org/10.3390/s20082261

    Article  ADS  Google Scholar 

  14. J. Muth, Communications 5, 10 (2017)

    Google Scholar 

  15. L.K. Gkoura, G.D. Roumelas, H.E. Sandalidis, H.G. Nistazakis, A. Vavoulas, A.D. Tsigopoulos, G.S. Tombras, Turbulence Modelling Approaches—Current State, Development Prospects, Applications (2017)

  16. A.S. Das, A.S. Patra, Opt. Laser Technol. 64, 23–27 (2014). https://doi.org/10.1016/j.optlastec.2014.04.011

    Article  ADS  Google Scholar 

  17. K.M.S. Huq, M. Bergano, A. Gameiro, M.T. Arefin, IJCSIS IJCSIS IJCSIS IJCSIS 4(1 & 2), 89 (2009). https://doi.org/10.48550/arXiv.0909.0251

    Article  Google Scholar 

  18. J.G. Proakis, M. Salehi, Communication Systems Engineering, 2nd edn. (Prentice Hall), pp.478–480 (2001)

    Google Scholar 

  19. K. Rawat, B. Kumar, Int. J. Sci. Eng. Res. 6(2), 257905 (2015)

    Google Scholar 

  20. M. Zhang, H. Zhou, Sensors 23(17), 7649 (2023). https://doi.org/10.3390/s23177649

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the infrastructural facility provided by Sidho-Kanho-Birsha University, Purulia, India, and SERB, Govt. of India, CRG/2019/006580, and DST FIST, SR/FST/PS-1/2020/159 for financial support to carry out the research work.

Funding

SERB, Govt. of India, CRG/2019/006580 and DST FIST (SR/FST/PS-I/2020/159), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the design of the proposed configuration. AD performs the whole simulation work and prepares the manuscript. AD, AKP, BD, RA and NS analysed the result. ASP (corresponding author) investigated and supervised the findings of this work and contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Ardhendu Sekhar Patra.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Pathak, A.K., Dutta, B. et al. 10 Gbps optical wireless communication system using laser diodes in coastal water environment. J Opt (2024). https://doi.org/10.1007/s12596-024-01668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01668-6

Keywords

Navigation