Skip to main content
Log in

Elliptical \({\varvec{q}}\)-Gaussian laser beams with intensity ripples in axially inhomogeneous plasmas: self-focusing

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Theoretical investigation on self-focusing of an elliptical \(q\)-Gaussian laser beam carrying an intensity ripple over its cross section in plasma with axial density ramp has been presented. The optical nonlinearity of plasma has been modeled by the relativistic mass nonlinearity of plasma electrons under the effect on intense field of laser beam. Variational theory has been invoked to obtain semi analytical solutions of the wave equations for the fields of main beam and that of ripple. Emphasis is put on the evolutions of the beam widths of main beam and that of ripple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, J.P. Knauer, R.L. McCrory, P.W. Mc Kenty, D.D. Meyerhofer, J.F. Myatt, A.J. Schmitt, J.D. Sethian, R.W. Short, S. Skupsky, W. Theobald, W.L. Kruer, K. Tanaka, R. Betti, T.J.B. Collins, J.A. Delettrez, S.X. Hu, J.A. Marozas, A.V. Maximov, D.T. Michel, P.B. Radha, S.P. Regan, T.C. Sangster, W. Seka, A.A. Solodov, J.M. Soures, C. Stoeckl, J.D. Zuegel, Direct-drive inertial confinement fusion: A review. Phys. Plasmas 22, 110501 (2015)

    Article  ADS  Google Scholar 

  2. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994)

    Article  ADS  CAS  Google Scholar 

  3. N. Gupta, Hot electron generation by self focused quadruple gaussian laser beams during inertial confinement fusion. Nonlinear Opt. Quantum Optics 55, 63 (2022)

    CAS  Google Scholar 

  4. J.R. Freeman, M.J. Clauser, S.L. Thompson, Rayleigh-Taylor instabilities in inertial-confinement fusion targets. Nucl. Fusion. Fusion 17, 223 (1977)

    Article  ADS  CAS  Google Scholar 

  5. J.D. Kilkenny, S.G. Glendinning, S.W. Haan, B.A. Hammel, J.D. Lindl, D. Munro, B.A. Remington, S.V. Weber, J.P. Knauer, C.P. Verdon, A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas 1, 1379 (1994)

    Article  ADS  CAS  Google Scholar 

  6. J. Sanz, Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion. Phys. Rev. Lett. 73, 2700 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. L. Videau, C. Rouyer, J. Garnier, A. Migus, Motion of hot spots in smoothed beams. J. Opt. Soc. Am. A 16, 1672 (1999)

    Article  ADS  Google Scholar 

  8. R. Kumar, K. Singh, T. Singh, Growth and stabilization of a laser ripple on laser beam in a collisionless unmagnetized plasma. Il Nuovo Cimento D 12, 323 (1990)

    Article  ADS  Google Scholar 

  9. N. Gupta, S. Kumar, Self-action effects of quadruple-Gaussian laser beams in collisional plasmas and their resemblance to Kepler’s central force problem. Pramana 95, 53 (2021)

    Article  ADS  Google Scholar 

  10. N. Gupta, S. Kumar, S. Chaudhry, S.B. Bhardwaj, S. Kumar, Potential well dynamics of self focusing of quadruple gaussian laser beams in thermal quantum plasma. Nonlinear Opt. Quantum Opt. 55, 281 (2022)

    CAS  Google Scholar 

  11. A. Singh, N. Gupta, Second harmonic generation of self-focused Cosh-Gaussian laser beam in collisional plasma. Optik 127, 5452 (2016)

    Article  ADS  Google Scholar 

  12. A. Singh, N. Gupta, Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma. Phys. Plasmas 22, 062115 (2015)

    Article  ADS  Google Scholar 

  13. G. Purohit, P.K. Chuhan, R.P. Sharma, H.D. Pandey, Effect of relativistic mutual interaction of two laser beams on the growth of laser ripple in plasma. Laser Part. Beams 23, 69 (2005)

    Article  ADS  CAS  Google Scholar 

  14. R. Gauniyal, P. Chauhan, P. Rawat, G. Purohit, Effect of self-focused rippled laser beam on the excitation of ion acoustic wave in relativistic ponderomotive regime. Laser Part. Beams 32, 557 (2014)

    Article  ADS  CAS  Google Scholar 

  15. M. Moshkelgosha, The effects of ripple characteristics on the simultaneous relativistic-ponderomotive self-focusing. Acta Phys. Pol. A 136, 957 (2019)

    Article  ADS  CAS  Google Scholar 

  16. M.S. Sodha, A. Sharma, G. Prakash, M.P. Verma, Growth of a ring ripple on a Gaussian beam in a plasma. Phys. Plasmas 11, 3023 (2004)

    Article  ADS  CAS  Google Scholar 

  17. S. Misra, S.K. Mishra, On focusing of a ring ripple on a Gaussian electromagnetic beam in a plasma. Phys. Plasmas 15, 092307 (2008)

    Article  ADS  Google Scholar 

  18. G. Purohit, P. Rawat, P. Chauhan, S.T. Mahmoud, Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime. Phys. Plasmas 22, 052116 (2015)

    Article  ADS  Google Scholar 

  19. P.K. Patel, M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H.S. Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S.C. Wilks, B. Zhang, Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Controlled Fusion 47, B833 (2005)

    Article  CAS  Google Scholar 

  20. M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Freeman, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, P. Jaanimagi, M.H. Key, K. Krushelnick, T. Ma, A. Mac Phee, A.J. Mac Kinnon, H. Nakamura, R.B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R.L. Weber, M.S. Wei, N.C. Woolsey, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million Kelvin by a peta watt laser. New J. Phys. 10, 043046 (2008)

    Article  Google Scholar 

  21. C. Tsallis, Non additive entropy and non extensive statistical mechanics-a novel view after 20years. Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  22. A.I. Akhiezer, R.V. Polovin, Theory of wave motion of an electron plasma. Sov. Phys. JETP 3, 696 (1956)

    MathSciNet  Google Scholar 

  23. D. Anderson, M. Bonnedal, M. Lisak, Non linear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  CAS  Google Scholar 

  24. D. Anderson, M. Bonnedal, Variational approach to non linear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N. Elliptical \({\varvec{q}}\)-Gaussian laser beams with intensity ripples in axially inhomogeneous plasmas: self-focusing. J Opt (2024). https://doi.org/10.1007/s12596-024-01660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01660-0

Keywords

Navigation