Skip to main content
Log in

An assessment of general road illumination system simulation methods and comparison of simulation outcomes with photometric measurements conducted on a public road with anthropogenic sources of peripheral illumination

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Implementation of controllable, reliable, and energy-efficient lighting systems for roads and thoroughfares is a public necessity and the use of software simulation in road lighting design can provide contractors and project engineers with a comprehensive view of the deliverables in road illumination projects. In this study, three different methods used to simulate road illumination systems are expounded: a general-purpose road lighting simulation program, a proprietary industry-standard simulation software, and a multiple regression-based road lighting model. Then, simulations are conducted for twelve ideal geometrical design configurations with the three methods and the outputs are compared. Furthermore, field measurements are made with a luminance camera on a public road utilizing induction luminaires in Turkey and simulations are conducted for comparison. It is found that simulated average luminance values are about 31.80–33.23% lower than those under field testing conditions and overall uniformity of luminance and longitudinal uniformity of luminance differ considerably as well. Such disparities can be primarily ascribed to partial interreflection of luminous flux and anthropogenic spill light from the adjacent establishments. Therefore, for congruence, it is imperative to consider the potential contributions of peripheral light sources in the simulation models and methods of road illumination systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Kostic, L. Djokic, Recommendations for energy efficient and visually acceptable street lighting. Energy 34(10), 1565–1572 (2009). https://doi.org/10.1016/j.energy.2009.06.056

    Article  Google Scholar 

  2. B.-J. Huang, C.-W. Chen, P.-C. Hsu, W.-M. Tseng, M.-S. Wu, Direct battery-driven solar LED lighting using constant-power control. Sol. Energy 86(11), 3250–3259 (2012). https://doi.org/10.1016/j.solener.2012.07.028

    Article  ADS  Google Scholar 

  3. A. Chalfin, B. Hansen, J. Lerner, L. Parker, Reducing crime through environmental design: evidence from a randomized experiment of street lighting in New York City. J. Quant. Criminol. 38(1), 127–157 (2022). https://doi.org/10.1007/s10940-020-09490-6

    Article  Google Scholar 

  4. K.G. Willis, N.A. Powe, G.D. Garrod, Estimating the value of improved street lighting: a factor analytical discrete choice approach. Urban Stud. 42(12), 2289–2303 (2005). https://doi.org/10.1080/00420980500332106

    Article  Google Scholar 

  5. K. Painter, D.P. Farrington, Street lighting and crime: diffusion of benefits in the stoke-on-trent project, in Surveillance of Public Space: CCTV, Street Lighting and Crime Prevention, vol. 10, ed. by K. Painter, N. Tilley (Criminal Justice Press, 1999), pp.77–122

    Google Scholar 

  6. M. Suresh, M. Pal, D. Sarkar, K. Majumdar, Generation of electricity using piezoelectric material: study on asphalt pavement structure on rural road. J. Mater. Civ. Eng. (2022). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003952

    Article  Google Scholar 

  7. S. Plainis, Road traffic casualties: understanding the night-time death toll. Inj. Prev. 12(2), 125–138 (2006). https://doi.org/10.1136/ip.2005.011056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P.O. Wanvik, Effects of road lighting on motorways. Traffic Inj. Prev. 10(3), 279–289 (2009). https://doi.org/10.1080/15389580902826866

    Article  PubMed  Google Scholar 

  9. R. Tamakloe, E.F. Sam, M. Bencekri, S. Das, D. Park, Mining groups of factors influencing bus/minibus crash severities on poor pavement condition roads considering different lighting status. Traffic Inj. Prev. 23(5), 308–314 (2022). https://doi.org/10.1080/15389588.2022.2066658

    Article  PubMed  Google Scholar 

  10. P.M. Cozens, R.H. Neale, J. Whitaker, D. Hillier, M. Graham, A Critical review of street lighting, crime and fear of crime in the British City. Crime Prev. Community Saf. 5(2), 7–24 (2003). https://doi.org/10.1057/palgrave.cpcs.8140143

    Article  Google Scholar 

  11. C. Knight, Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Light. Res. Technol. 42(3), 313–329 (2010). https://doi.org/10.1177/1477153510376794

    Article  Google Scholar 

  12. S. Fotios, J. Unwin, S. Farrall, Road lighting and pedestrian reassurance after dark: a review. Light. Res. Technol. 47(4), 449–469 (2015). https://doi.org/10.1177/1477153514524587

    Article  Google Scholar 

  13. I. Pinke-Sziva, M. Smith, G. Olt, Z. Berezvai, Overtourism and the night-time economy: a case study of Budapest. Int. J. Tour. Cities 5(1), 1–16 (2019). https://doi.org/10.1108/IJTC-04-2018-0028

    Article  Google Scholar 

  14. H. Biswas, V. Sarkar, P. Sen, D. Sarddar, Smart city development: theft handling of public vehicles using image analysis and cloud network, in Recent Trends in Computational Intelligence Enabled Research. (Elsevier, 2021), pp.155–169. https://doi.org/10.1016/B978-0-12-822844-9.00013-X

    Chapter  Google Scholar 

  15. R. Sikora, P. Markiewicz, Assessment of colorimetric parameters for HPS lamp with electromagnetic control gear and electronic ballast. Energies (Basel) 13(11), 2909 (2020). https://doi.org/10.3390/en13112909

    Article  CAS  Google Scholar 

  16. A. Thungtong, C. Chaichan, K. Suwannarat, A web-based control system for traditional street lighting that uses high-pressure sodium lamps. Heliyon 7(11), e08329 (2021). https://doi.org/10.1016/j.heliyon.2021.e08329

    Article  PubMed  PubMed Central  Google Scholar 

  17. M.H. Jamaludin, W.Z. Wan Ismail, E.M. Husini, N.A.M. Bahror, Investigation of photometric distribution of LED and HSPV for road lighting. J. Eng. Appl. Sci. 70(1), 112 (2023). https://doi.org/10.1186/s44147-023-00286-6

    Article  Google Scholar 

  18. M. Rea, J. Bullough, Y. Akashi, Several views of metal halide and high-pressure sodium lighting for outdoor applications. Light. Res. Technol. 41(4), 297–320 (2009). https://doi.org/10.1177/1477153509102342

    Article  Google Scholar 

  19. A.G. Abdullah, R.L. Pambudi, W. Purnama, A.B.D. Nandiyanto, F. Triawan, M. Aziz, Redesigning street-lighting system using led and hps luminaires for better energy-saving application. J. Eng. Sci. Technol. 14(4), 2140–2151 (2019)

    Google Scholar 

  20. M. Omar, H. Rahman, M. Majid, N. Rosmin, M. Hassan, W.W. Omar, Design and simulation of electronic ballast performance for high pressure sodium street lighting. Light. Res. Technol. 45(6), 729–739 (2013). https://doi.org/10.1177/1477153512471365

    Article  Google Scholar 

  21. S. Yoomak, C. Jettanasen, A. Ngaopitakkul, S. Bunjongjit, M. Leelajindakrairerk, Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system. Energy Build. 159, 542–557 (2018). https://doi.org/10.1016/j.enbuild.2017.11.060

    Article  Google Scholar 

  22. E.G. Rowse, S. Harris, G. Jones, The switch from low-pressure sodium to light emitting diodes does not affect bat activity at street lights. PLoS ONE 11(3), e0150884 (2016). https://doi.org/10.1371/journal.pone.0150884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.A. Brons, J.D. Bullough, D.C. Frering, Rational basis for light emitting diode street lighting retrofit luminaire selection. Transp. Res. Rec. J. Transp. Res. Board 2675(9), 634–638 (2021). https://doi.org/10.1177/03611981211003890

    Article  Google Scholar 

  24. S. Onaygil, Ö. Güler, E. Erkin, Cost analyses of LED luminaires in road lighting. Light. Eng. 20(2), 39–45 (2012)

    Google Scholar 

  25. A. Gil-de-Castro, A. Moreno-Munoz, A. Larsson, J. de la Rosa, M. Bollen, LED street lighting: a power quality comparison among street light technologies. Light. Res. Technol. 45(6), 710–728 (2013). https://doi.org/10.1177/1477153512450866

    Article  Google Scholar 

  26. R. Ayaz, A.K. Ozcanli, I. Nakir, P. Bhusal, A. Unal, Life cycle cost analysis on M1 and M2 road class luminaires installed in Turkey. Light. Eng. (2019). https://doi.org/10.33383/2018-008

    Article  Google Scholar 

  27. V. Baynev, S. Fedosin, Simulation and study of optical systems based on leds. Acta Tech. 63(6), 897–902 (2018)

    Google Scholar 

  28. A. Avotins, L.R. Adrian, R. Porins, P. Apse-Apsitis, L. Ribickis, Smart city street lighting system quality and control issues to increase energy efficiency and safety. Balt. J. Road Bridge Eng. 16(4), 28–57 (2021). https://doi.org/10.7250/bjrbe.2021-16.538

    Article  Google Scholar 

  29. S. Chakraborty, A.D. Goswami, S. Mazumdar, Beam controlled lighting design: An approach towards optimization of road lighting design. Optik (Stuttg) 261, 169165 (2022). https://doi.org/10.1016/j.ijleo.2022.169165

    Article  ADS  Google Scholar 

  30. A.D. Goswami, J. Roy, S. Chakraborty, P. Dutta, An experimental analysis of object recognition performance under different lighting scenes for varying CCT of LED light sources, in 2023 IEEE Sustainable Smart Lighting World Conference & Expo (LS18) (IEEE, 2023), pp. 1–6. https://doi.org/10.1109/LS1858153.2023.10170594

  31. P. Satvaya, S. Mazumdar, Performance analysis of a variable flux and CCT-based outdoor LED luminaire. J. Opt. 52(3), 1305–1317 (2023). https://doi.org/10.1007/s12596-023-01113-0

    Article  Google Scholar 

  32. I.I. Bayneva, V.V. Baynev, Computer modelling and experimental research of led optical systems. Light. Eng. 29(03), 37–42 (2021). https://doi.org/10.33383/2021-022

    Article  Google Scholar 

  33. D.Y. Unlu, The optical design of a LED-reflector module in road illumination. Light. Eng. (2022). https://doi.org/10.33383/2021-094

    Article  Google Scholar 

  34. R. Wu, K. Li, P. Liu, Z. Zheng, H. Li, X. Liu, Conceptual design of dedicated road lighting for city park and housing estate. Appl. Opt. 52(21), 5272 (2013). https://doi.org/10.1364/AO.52.005272

    Article  ADS  PubMed  Google Scholar 

  35. A.-M. Ylinen, L. Tähkämö, M. Puolakka, L. Halonen, Road lighting quality, energy efficiency, and mesopic design—LED street lighting case study. LEUKOS 8(1), 9–24 (2011). https://doi.org/10.1582/LEUKOS.2011.08.01.001

    Article  Google Scholar 

  36. P. Morgan Pattison, M. Hansen, J.Y. Tsao, LED lighting efficacy: status and directions. C. R. Phys. 19(3), 134–145 (2018). https://doi.org/10.1016/j.crhy.2017.10.013

    Article  ADS  CAS  Google Scholar 

  37. S. Tannous, R. Manneh, H. Harajli, H. El Zakhem, Comparative cradle-to-grave life cycle assessment of traditional grid-connected and solar stand-alone street light systems: a case study for rural areas in Lebanon. J. Clean. Prod. 186, 963–977 (2018). https://doi.org/10.1016/j.jclepro.2018.03.155

    Article  Google Scholar 

  38. C.-A. Cheng, H.-L. Cheng, C.-H. Chang, E.-C. Chang, W.-S. Hung, C.-C. Lai, L.-F. Lan, A single-stage high power factor power supply for providing an LED street-light lamp featuring soft-switching and bluetooth wireless dimming capability. Energies (Basel) 14(2), 477 (2021). https://doi.org/10.3390/en14020477

    Article  Google Scholar 

  39. M. Fontoynont, LED lighting, ultra-low-power lighting schemes for new lighting applications. C. R. Phys. 19(3), 159–168 (2018). https://doi.org/10.1016/j.crhy.2017.10.014

    Article  ADS  CAS  Google Scholar 

  40. C. Eichelberger, LEDs come to the forefront of general lighting applications. Inf. Disp. 26(1), 16–20 (2010). https://doi.org/10.1002/j.2637-496X.2010.tb00201.x

    Article  Google Scholar 

  41. R. Müllner, A. Riener, An energy efficient pedestrian aware smart street lighting system. Int. J. Pervasive Comput. Commun. 7(2), 147–161 (2011). https://doi.org/10.1108/17427371111146437

    Article  Google Scholar 

  42. S. Yoomak, A. Ngaopitakkul, Optimisation of lighting quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces. Sustain. Cities Soc. 38, 333–347 (2018). https://doi.org/10.1016/j.scs.2018.01.005

    Article  Google Scholar 

  43. A. Peña-García, D. Gómez-Lorente, A. Espín, O. Rabaza, New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: the general equations for lighting design. Eng. Optim. 48(6), 1080–1089 (2016). https://doi.org/10.1080/0305215X.2015.1085715

    Article  Google Scholar 

  44. M. Eriyadi, A.G. Abdullah, S.B. Mulia, H. Hasbullah, Street lighting efficiency with particle swarm optimization algorithm following Indonesian standard. J. Phys. Conf. Ser. 1402(4), 044009 (2019). https://doi.org/10.1088/1742-6596/1402/4/044009

    Article  Google Scholar 

  45. O. Rabaza, D. Gómez-Lorente, F. Pérez-Ocón, A. Peña-García, A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis. Energy 107, 831–842 (2016). https://doi.org/10.1016/j.energy.2016.04.078

    Article  Google Scholar 

  46. H.I.S. Wicaksono, A.G. Abdullah, D.L. Hakim, Optimizing public street lighting and redesign of public road lighting based on DIALux and fuzzy logic. IOP Conf. Ser. Mater. Sci. Eng. 1098(4), 0420 (2021). https://doi.org/10.1088/1757-899X/1098/4/042013

    Article  Google Scholar 

  47. M.M. Ibrahim, A.M. Elwany, L.K. Elansary, Sustainable technical design and economic–environmental analysis of SMART solar street lighting system in Giza City, Egypt. Int. J. Energy Environ. Eng. 12(4), 739–750 (2021). https://doi.org/10.1007/s40095-021-00403-2

    Article  Google Scholar 

  48. J.K.X. Ying, W.F. Lim, Study and optimization of lens shape affecting light patterns of light-emitting diode (LED) street lighting. Optik (Stuttg) 260, 169083 (2022). https://doi.org/10.1016/j.ijleo.2022.169083

    Article  CAS  Google Scholar 

  49. S. Bhattacharya, S. Chakraborty, S. Ray, An approach to comparative simulation of road lighting and estimation of associated quality parameters. Light. Eng. 29(01), 77–87 (2021). https://doi.org/10.33383/2020-058

    Article  Google Scholar 

  50. S. Roy, P. Satvaya, S. Bhattacharya, S. Majumder, S. Majumder, I.H. Sardar, An exposition of a road lighting model to facilitate simple estimation of road surface illuminance parameters for conventional system specifications and recommendations for retrofitting of luminaires. J. Opt. 51(2), 444–455 (2022). https://doi.org/10.1007/s12596-021-00792-x

    Article  Google Scholar 

  51. S. Bhattacharya, S. Majumder, S. Roy, Modelling of the effects of luminaire installation geometries and other factors on road illumination system photometric parameters and energy efficiency. World J. Eng. (2003). https://doi.org/10.1108/WJE-09-2022-0372

    Article  Google Scholar 

  52. S.H. Shikder, A.D. Price, M. Mourshed, Evaluation of Four Artificial Lighting Simulation Tools with Virtual Building Reference (2012). https://dspace.lboro.ac.uk/2134/9780

  53. C.A. Bouroussis, D.T. Nikolaou, F.V. Topalis, Test Report on the Validation of Relux Desktop 2019 against CIE 171:2006 (2019).

  54. A. Sędziwy, A new approach to street lighting design. LEUKOS 12(3), 151–162 (2016). https://doi.org/10.1080/15502724.2015.1080122

    Article  Google Scholar 

  55. N.C. Karmakar, M. Aruna, Y.V. Rao, U.K.R. Yaragatti, Design of haul road lighting system. Part I: design based on optimal energy considerations. Int. J. Min. Reclam. Environ. 20(3), 165–174 (2006). https://doi.org/10.1080/17480930600680160

    Article  Google Scholar 

  56. D. Czyżewski, I. Fryc, The influence of luminaire photometric intensity curve measurements quality on road lighting design parameters. Energies (Basel) 13(13), 3301 (2020). https://doi.org/10.3390/en13133301

    Article  Google Scholar 

  57. F. Falchi, P. Cinzano, C.D. Elvidge, D.M. Keith, A. Haim, Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 92(10), 2714–2722 (2011). https://doi.org/10.1016/j.jenvman.2011.06.029

    Article  Google Scholar 

  58. J. Du, X. Zhang, D. King, An investigation into the risk of night light pollution in a glazed office building: the effect of shading solutions. Build. Environ. 145, 243–259 (2018). https://doi.org/10.1016/j.buildenv.2018.09.029

    Article  Google Scholar 

  59. J.C.K. Tong, A.H.L. Wun, T.T.H. Chan, E.S.L. Lau, E.C.F. Lau, H.H.K. Chu, A.P.S. Lau, Simulation of vertical dispersion and pollution impact of artificial light at night in urban environment. Sci. Total. Environ. 902, 166101 (2023). https://doi.org/10.1016/j.scitotenv.2023.166101

    Article  ADS  CAS  PubMed  Google Scholar 

  60. T. Wang, N. Kaida, K. Kaida, Effects of outdoor artificial light at night on human health and behavior: a literature review. Environ. Pollut. 323, 121321 (2023). https://doi.org/10.1016/j.envpol.2023.121321

    Article  CAS  PubMed  Google Scholar 

  61. R.P. Haining, Spatial autocorrelation, in International Encyclopedia of the Social & Behavioral Sciences. (Elsevier, 2001), pp.14763–14768. https://doi.org/10.1016/B0-08-043076-7/02511-0

    Chapter  Google Scholar 

  62. J.J. Berman, Understanding your data, in Data Simplification. (Elsevier, 2016), pp.135–187. https://doi.org/10.1016/B978-0-12-803781-2.00004-7

    Chapter  Google Scholar 

  63. M. Shpak, P. Kärhä, G. Porrovecchio, M. Smid, E. Ikonen, Luminance meter for photopic and scotopic measurements in the mesopic range. Meas. Sci. Technol. 25(9), 095001 (2014). https://doi.org/10.1088/0957-0233/25/9/095001

    Article  ADS  CAS  Google Scholar 

  64. A.V. Rusu, C.D. Galatanu, G. Livint, D.D. Lucache, Measuring average luminance for road lighting from outside the carriageway with imaging sensor. Sustainability 13(16), 9029 (2021). https://doi.org/10.3390/su13169029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourin Bhattacharya.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest that could have influenced the outcomes of this work. No funding or pecuniary support has been received for and during the conduction of this study. The results or conclusions do not endorse any particular industry-standard software tool for the conduction of photometric simulation of road illumination systems.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, R., Roy, S. & Bhattacharya, S. An assessment of general road illumination system simulation methods and comparison of simulation outcomes with photometric measurements conducted on a public road with anthropogenic sources of peripheral illumination. J Opt (2024). https://doi.org/10.1007/s12596-023-01645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01645-5

Keywords

Navigation