Skip to main content
Log in

Probe response of photonic cavity with graphene sheet: slow light and fast light

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We analyze the probe response at strong and weak coupling regimes and group delay of a probe field in a cavity optomechanical system. In present system is coupled with a graphene sheet. A strong THz pulse is generated by exploiting the nonlinearity of graphene. The interaction between optical and mechanical modes gives induced transparency under different detuning conditions, during the optical propagation of a signal. Due to the nonlinearity of graphene, the intensity of the four-wave mixing (FWM) dynamically changes under a driving laser source, more surprisingly. We can adjust the FWM intensity by controlling the power of the probe laser. In this report, we have studied the real and imaginary parts of the relative amplitude of the output field to the input field, the phase of the probe field, the transmission rate, and group delay. The phase of the transmitted field shows both anomalous and normal dispersion. In the presence of the graphene, the group velocity is more prominent both in positive and negative regimes which is unique with respect to other models. This study may be useful for ultrafast optical signal processing, and optical storage to design many device applications in quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This Manuscript has no associated data or data will not be deposited. [Authors Comment: The data that support the findings of the theoretical study are available within all sections and the other details of this study are available by reasonable request with the corresponding Author.]

References

  1. J. Chan, T.P.M. Alegre, A.H.S. Naeini, J.T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  Google Scholar 

  2. X.Y. Lu, Y. Wu, J.R. Johansson, H. Jing, J. Zhang, F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015)

    Article  ADS  Google Scholar 

  3. A. Hafeez, M. Abbas, S. Qamar, Optomechanically induced transparency and Fano resonances in a graphene-based nanocavity. J. Opt. Soc. Am. B 36, 3070–3078 (2019)

    Article  ADS  Google Scholar 

  4. F. Wang, W. Liu, Z. Wei, H. Meng, H. Liu, Flexible control of two-channel transmission and group delay in an optomechanical system with double quantum dots driven by external field. Nanomaterials 11, 15–54 (2021)

    Google Scholar 

  5. S. Weis, R. Rivire, S. Delglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Optomechanically induced transparency. Sci. Rep. 330, 15–20 (2010)

    Google Scholar 

  6. G.S. Agarwal, S. Huang, Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  7. S. Huang, G.S. Agarwal, Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys. Rev. A 83, 043826 (2011)

    Article  ADS  Google Scholar 

  8. S. Huang, G.S. Agarwal, Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four wave-mixing cavity optomechanics. Phys. Rev. A 81, 033830 (2010)

    Article  ADS  Google Scholar 

  9. A.H. Safavi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter, Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)

    Article  ADS  Google Scholar 

  10. P. Komar, S.D. Bennett, K. Stannigel, S.J.M. Habraken, P. Rabl, P. Zoller, M.D. Lukin, Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)

    Article  ADS  Google Scholar 

  11. Y.C. Liu, B.B. Li, Y.F. Xiao, Electromagnetically induced transparency in optical microcavities. Nanophotonics 6(5), 789–811 (2017)

    Article  Google Scholar 

  12. D.E. Sheely, J. Schmalian, Optical transparency of graphene as determined by the fine structure constant. Phy. Rev. B 80, 193411–193114 (2009)

    Article  ADS  Google Scholar 

  13. X. Xiong, C. Jiang, Q. Xie, Broadband transmission properties of graphene dielectric interface. Results Phys. 14, 102521 (2019)

    Article  Google Scholar 

  14. J. Kerr et al., A new relation between electrically and light: diel electrified media birefringent. Lond. Edinb. Dublin. Philos. Mag. J. Sci. 50, 337–348 (1875)

    Article  Google Scholar 

  15. H. Wang, Q. Qiao, C. Peng, J. Xia, G. Zhon, Y. J. Zhao, X. W. Xu, Two-dimensional optomechanics formed by the graphene sheet and photonic cavity. https://doi.org/10.48550/arXiv.1806.00798 (2018)

  16. J.D. Teufel, T. Donner, D. Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)

    Article  ADS  Google Scholar 

  17. J.S. Bunch et al., Electromechanical resonators from graphene sheets. Sci. Rep. 315(5811), 490–493 (2007)

    Google Scholar 

  18. X.W. Xu, H. Wang, J. Zhang, Y.X. Liu, Engineering of nonclassical motional states in optomechanical systems. Phys. Rev. A 88, 063819 (2013)

    Article  ADS  Google Scholar 

  19. F. Sattari, M. Aslanzadeh, Spin dependent group delay time in graphene with a time-periodic potential. Phys. Lett. A 384(28), 126734 (2020)

    Article  MathSciNet  Google Scholar 

  20. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical crystals. Nature 462, 78 (2009)

    Article  ADS  Google Scholar 

  21. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  22. P. Weber, J. Guttinger, A. Noury, J. Vergara-Cruz, A. Bachtold, Force sensitivity of multilayer graphene optomechanical devices. Nature Nano Technol. 7, 12496 (2016)

    Google Scholar 

  23. P. Weber, J. Gttinger, I. Tsioutsios, D.E. Chang, A. Bachtold, Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14, 2854 (2014)

    Article  ADS  Google Scholar 

  24. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. WilsonRae, A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol.Nanotechnol. 6, 339 (2011)

    Article  ADS  Google Scholar 

  25. X. Gan, K.F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T.F. Heinz, D. Englund, Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626 (2012)

    Article  ADS  Google Scholar 

  26. H. Li, Y. Anugrah, S.J. Koestera, M. Li, Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101, 111110 (2012)

    Article  ADS  Google Scholar 

  27. Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, Y. Su, Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt. Express 25, 19479 (2017)

    Article  ADS  Google Scholar 

  28. A. Majumdar, J. Kim, J. Vuckovic, F. Wang, Electrical control of silicon photonic crystal cavity by graphene. Nano Lett. 13, 515 (2013)

    Article  ADS  Google Scholar 

  29. R.A. Barton, I.R. Storch, V.P. Adiga, R. Sakakibara, B.R. Cipriany, B. Ilic, S.P. Wang, P. Ong, P.L. Mceuen, J.M. Parpia, H.G. Craighead, Photothermal self-oscillation of graphene optomechanical systems. Nano Lett. 12, 468 (2012)

    Article  Google Scholar 

  30. M.H. Shih, L.J. Li, Y.C. Yang, H.Y. Chou, C.T. Lin, C.Y. Su, Efficient heat dissipation of photonic crystal microcavity by monolayer graphene. ACS Nano 7, 10818 (2013)

    Article  Google Scholar 

  31. L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008)

    Article  Google Scholar 

  32. J.S. Bunch, A.M. Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. Mceue, Electromechanical resonators from graphene sheets. Science 315, 490 (2007)

    Article  ADS  Google Scholar 

  33. C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol.Nanotechnol. 4, 861 (2009)

    Article  ADS  Google Scholar 

  34. H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, Nonlinear THz conductivity dynamics in CVD-grown graphene. http://arxiv.org/abs/1101.4985 (2011)

  35. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008)

    Article  Google Scholar 

  36. J. Horng, C.F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H.A. Bechtel, M. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Drude conductivity of Dirac fermion in graphene. Phys. Rev. B 83, 165113 (2011)

    Article  ADS  Google Scholar 

  37. W.S. Bao, S. Liu, X.L. Lei, C.M. Wang, Nonlinear dc transport in graphene. J. Phys. Condens. MatterCondens. Matter 21, 305302 (2009)

    Article  ADS  Google Scholar 

  38. B. Dora, R. Moessner, Nonlinear electric transport in graphene: quantum quench dynamics and the Schwinger mechanism. Phys. Rev. B 81, 165431 (2010)

    Article  ADS  Google Scholar 

  39. E.G. Mishchenko, Dynamic conductivity in graphene beyond linear response. Phys. Rev. Lett. 103, 246802 (2009)

    Article  ADS  Google Scholar 

  40. R.S. Shishir, D.K. Ferry, S.M. Goodnick, Room temperature velocity saturation in intrinsic graphene. J. Phys. Conf. Ser. 193, 012118 (2009)

    Article  Google Scholar 

  41. S. Shareef, Y.S. Ang, C. Zhang, Room-temperature strong terahertz photon mixing in graphene. J. Opt. Soc. Am. B 29, 274–279 (2012)

    Article  ADS  Google Scholar 

  42. S.A. Mikhailov, Non-linear electromagnetic response of graphene. Europhys. Lett.. Lett. 792, 27002 (2007)

    Article  Google Scholar 

  43. A.R. Wright, X.G. Xu, J.C. Cao, C. Zhang, Strong nonlinear optical response of graphene in the terahertz regime. App. Phys. Lett. 95, 072101 (2009)

    Article  ADS  Google Scholar 

  44. K.L. Ishikawa, Nonlinear optical response of graphene in time domain. Phys. Rev. B 82, 201402 (2010)

    Article  ADS  Google Scholar 

  45. I. Al-Naib, J.E. Sipe, M.M. Dignam, High harmonic generation in undoped graphene: Interplay of inter-and intraband dynamics. Phys. Rev. B 90, 245423 (2014)

    Article  ADS  Google Scholar 

  46. M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A.A. Muller, R. Plana, Millimeter-wave generation via frequency multiplication in graphene. Appl. Phys. Lett. 97, 093101 (2010)

    Article  ADS  Google Scholar 

  47. C.T. Phare, Y.H.D. Lee, J. Cardenas, M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015)

    Article  ADS  Google Scholar 

  48. F.N. Xia, T. Mueller, Y.M. Lin, A.V. Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol.Nanotechnol. 4, 839 (2009)

    Article  ADS  Google Scholar 

  49. Y.M. Lin, D. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  50. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012)

    Article  ADS  Google Scholar 

  51. J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.N. Mei, J. Shi, Z. Gao, J. Lu, Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci. Rep. 3, 1314 (2013)

    Article  Google Scholar 

  52. T. Stauber, N.M.R. Peres, F. Guinea, A.H. Castro Neto, Fermi Liquid theory of a Fermi ring. Phys. Rev. B 75, 115425 (2007)

    Article  ADS  Google Scholar 

  53. V. Eduardo, K.S. Castro, S.V. Novoselov, N.M.R. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, F. Johan Nilsson, F. Guinea, A.K. Gelim, A.H. Castro, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)

    Article  ADS  Google Scholar 

  54. J.B. Oostinga et al., Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151 (2008)

    Article  ADS  Google Scholar 

  55. Y.Q. Wu et al., Microwave transmission properties of chemical vapor deposition graphene. Appl. Phys. Lett. 101, 053110 (2012)

    Article  ADS  Google Scholar 

  56. P. Plochocka, C. Faugeras, M. Orlita, M.L. Sadowski, G. Martinez, M. Potemski, M.O. Goerbig, J.-N. Fuchs, C. Berger, W.A. de Heer, High-energy limit of massless dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy. Phys. Rev. Lett. 100, 087401 (2008)

    Article  ADS  Google Scholar 

  57. L.A. Falkovsky, S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  58. V. Singh, S.J. Bosman, B.H. Schneider, Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol.Nanotechnol. 9(10), 820 (2014)

    Article  ADS  Google Scholar 

  59. S. Huang, G.S. Agarwal, Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: radiation-pressure-induced four-wave-mixing cavity optomechanics. Phys. Rev. A 81(3), 033830 (2010)

    Article  ADS  Google Scholar 

  60. H. Wang, X. Gu, Y. Liu, A. Miranowicz, F. Nori, Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  61. C. Jiang, L. Jiang, H.L. Yu, Y.S. Cui, X.W. Li, G.B. Chen, Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 96, 053821 (2017)

    Article  ADS  Google Scholar 

  62. K.J. Vahala, Optical microcavities. Nature 424(6950), 839–846 (2003)

    Article  ADS  Google Scholar 

  63. B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, L. Yang, Loss-induced suppression and revival of lasing. Science 346(6207), 328–332 (2014)

    Article  ADS  Google Scholar 

  64. A. Samanta, P.C. Jana, Tunable optomechanical induced transparency and Fano-resonance in double cavity Optomechanical system with nonreciprocal coupling. Re. Rev. J. Phys. 10(2), 05–15 (2021)

    Google Scholar 

  65. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  66. C. Jiang, Y.S. Cui, Z.Y. Zhai, H.L. Yu, X.W. Li, G.B. Chen, Phase-controlled amplification and slow light in a hybrid optomechanical system. Opt. Express 27, 30473–30485 (2019)

    Article  ADS  Google Scholar 

  67. K. Totsuka, N. Kobayashi, M. Tomita, Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904 (2007)

    Article  ADS  Google Scholar 

  68. T.F. Krauss, why do we need slow light? Nat. Photonics 2, 448–450 (2008)

    Article  ADS  Google Scholar 

  69. P.W. Mlonni, Fast Light, Slow Light and Left-Handed Light (IOP Publishing, Bristol, 2004)

    Book  Google Scholar 

  70. A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69 (2011)

    Article  ADS  Google Scholar 

  71. F. Massel, T.T. Heikkila, J.M. Pirkkalainen, Microwave amplification with nanomechanical resonators. Nature 480(7377), 351 (2011)

    Article  ADS  Google Scholar 

  72. K. Mukherjee, P.C. Jana, Probe response of a two-mode cavity with χ2 non-linearity, non-reciprocity, and slow and fast light. Appl. Phys. B 127, 168 (2021)

    Article  ADS  Google Scholar 

  73. T.J. Kippenberg, K.J. Vahala, Cavity opto-mechanics. Opt. Express 15(25), 17172–17205 (2007)

    Article  ADS  Google Scholar 

  74. P. Weber, J. Guttinger, I. Tsioutsios, D.E. Chang, A. Bachtold, Coupling graphene mechanical resonators to superconducting microw wave cavities. Nano Lett. 14(5), 2854–2860 (2014)

    Article  ADS  Google Scholar 

  75. K.Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G.H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alu, J. Vuckovic, Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photonics 14(6), 369–374 (2020)

    Article  ADS  Google Scholar 

  76. X. Wang, Y.P. Chen, D.D. Nolte, Strong anomalous optical dispersion of graphene: Complex refractive index measured by Picometrology. Opt. Express 16(26), 22105 (2008)

    Article  ADS  Google Scholar 

  77. R. Xu, P. Bing, X. Yan, H. Yao, L. Liang, Z. Li, X. Hu, M. Wang, J. Yao, Graphene-Assisted Electromagnetically induced transparency-like Teraherth Metabiosensor for ultra-sensitive detection of ovalbumin. Photonics 10, 67 (2023). https://doi.org/10.3390/photonics10010067

    Article  Google Scholar 

  78. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  79. S. May et al., Second harmonic generation in AIGaAs-on –insulator waveguides. Opt. Lett. 44, 1339 (2019)

    Article  ADS  Google Scholar 

  80. S. Bergfeld, W. Daum, Second- harmonic generation in GaAs: experimental versus theoretical predictions. Phys. Rev. Lett. 90, 036801 (2003)

    Article  ADS  Google Scholar 

  81. T.J. Johnson, M. Borselli, O. Painter, Self-induced optical modulation of the transmission through a high-Q silicon micro-disk resonator. Opt. Express 14, 817–831 (2006)

    Article  ADS  Google Scholar 

  82. S. Sahu, S. K. Panda, G. C. Rout, Theory of dielectric loss in Graphene-on-substrate: A tight binding model study, in IConAMMA-2016 IOP Conference Series, Materials Science and Engineering, vol. 149, p. 012191 (2016). https://doi.org/10.1088/1757-899X/149/1/012191

  83. F.R. Prudencio, M.G. Silveirinha, Asymmetric electron energy loss in drift-current biased graphene. Plasmonics 16, 19–26 (2021). https://doi.org/10.1007/s11468-020-01215-6

    Article  Google Scholar 

  84. A. Zheng, G. Zhang, H. Chen et al., Nonreciprocal light propagation in coupled microcavities system beyond weak-excitation approximation. Sci. Rep. 7, 14001 (2017). https://doi.org/10.1038/s41598-017-14397-7

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the whole work, read very carefully, and verified the output profile. AS performed theoretical and numerical calculations, checked graphical outputs, and wrote the paper.

Corresponding author

Correspondence to Anjan Samanta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Let \({{a}_{1}}^{*}{a}_{1}=<{{a}_{1}}^{*}{a}_{1}>+\delta ({{a}_{1}}^{*}{a}_{1})\)

$$\begin{aligned} a_{1}^{*} a_{1} a_{1}^{*} a_{1} & = \left\{ {\left\langle {a_{1}^{*} a_{1} } \right\rangle + \delta \left( {a_{1}^{*} a_{1} } \right)} \right\}\left\{ {\left\langle {a_{1}^{*} a_{1} } \right\rangle + \delta \left( {a_{1}^{*} a_{1} } \right)} \right\} \\ & = \left\langle {a_{1}^{*} a_{1} } \right\rangle^{2} + \left\langle {a_{1}^{*} a_{1} } \right\rangle \delta \left( {a_{1}^{*} a_{1} } \right) + \delta \left( {a_{1}^{*} a_{1} } \right)\left\langle {a_{1}^{*} a_{1} } \right\rangle + \left\{ {\delta \left( {a_{1}^{*} a_{1} } \right)} \right\}^{2} \\ \end{aligned}$$

Now neglecting the square of the fluctuation part, the value of \({{a}_{1}}^{*}{a}_{1}{{a}_{1}}^{*}{a}_{1}\) is given

$$\begin{aligned} a_{1}^{*} a_{1} a_{1}^{*} a_{1} & = \left\langle {a_{1}^{*} a_{1} } \right\rangle^{2} + 2\left\langle {a_{1}^{*} a_{1} } \right\rangle \delta \left( {a_{1}^{*} a_{1} } \right) \\ & = \left\langle {a_{1}^{*} a_{1} } \right\rangle^{2} + 2\left\langle {a_{1}^{*} a_{1} } \right\rangle \left( {a_{1}^{*} a_{1} - \left\langle {a_{1}^{*} a_{1} } \right\rangle } \right) \\ & = \left\langle {a_{1}^{*} a_{1} } \right\rangle^{2} + 2\left\langle {a_{1}^{*} a_{1} } \right\rangle (a_{1}^{*} a_{1} ) - 2\left\langle {a_{1}^{*} a_{1} } \right\rangle^{2} ) \\ & = - \left\langle {a_{1}^{*} a_{1} } \right\rangle^{2} + 2\left\langle {a_{1}^{*} a_{1} } \right\rangle (a_{1}^{*} a_{1} ) \\ \end{aligned}$$

Appendix B

We determine the \({A}_{+}\), \({B}_{+}\), \({C}_{+}\) by using the following relation \(X=Y{M}^{-1}.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Jana, P.C. Probe response of photonic cavity with graphene sheet: slow light and fast light. J Opt (2023). https://doi.org/10.1007/s12596-023-01422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01422-4

Keywords

Navigation