Skip to main content

Advertisement

Log in

Optimization and performance enhancement of InP/CIGS/CuI solar cell using bandgap grading

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper presents a high performing Cu(In1 − xGax)Se2 (CIGS) based solar cell that uses naturally abundant and non-toxic InP (indium phosphide) as an electron transport layer and CuI (copper iodide) as a hole transport layer. These materials, InP and CuI, are better replacements for toxic material based solar cells. The proposed structure comprises a glass substrate/n-ZnO (Zinc oxide)/n-InP/p-CIGS/p-CuI/metal electrode. A graded CIGS layer (i.e. varying energy band gap and electron affinity) is used in this structure for a better harvesting of broad spectrum of solar energy. The proposed PV cell is optimized for different band gap grading of CIGS layer to enhance the performance of the cell. For further optimization of the proposed cell, thickness, doping concentration, and defect density of different layers are varied. After optimization, the proposed cell shows a maximum power conversion efficiency of 30.50% (Voc = 0.8857 V, Jsc = 39.57 mA cm−2, FF = 87.05%) for 1100 nm thickness of the CIGS layer. The optimized device is further analyzed for various temperatures and resistances (series and shunt). All the simulations are done at room temperature (300 K) using SCAP-1D software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Ghosh, S. Mitra, M.S. Siddiqui, Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells. Opt. Commun. 413, 63–72 (2018). https://doi.org/10.1016/j.optcom.2017.12.028

    Article  ADS  Google Scholar 

  2. H. Tao, W. Zhang, C. Zhang et al., High absorption perovskite solar cell with optical coupling structure. Opt. Commun. 443, 262–267 (2019). https://doi.org/10.1016/j.optcom.2019.02.001

    Article  ADS  Google Scholar 

  3. A. Elhalim, M. Abderrezek, M. Elamine, Numerical study of CZTS/CZTSSe tandem thin film solar cell using SCAPS-1D. Optik (Stuttg) 242, 167320 (2021). https://doi.org/10.1016/j.ijleo.2021.167320

    Article  Google Scholar 

  4. M.T. Islam, A. Kumar, A.K. Thakur, Defect density control using an intrinsic layer to enhance conversion efficiency in an optimized SnS solar cell. J. Electron. Mater. 50, 3603–3613 (2021). https://doi.org/10.1007/s11664-021-08881-0

    Article  ADS  Google Scholar 

  5. A. Kumar, A.D. Thakur, Impurity photovoltaic and split spectrum for efficiency gain in Cu2ZnSnS4 solar cells. Optik (Stuttg) 238, 166783 (2021). https://doi.org/10.1016/j.ijleo.2021.166783

    Article  ADS  Google Scholar 

  6. M. Ayad, M. Fathi, A. Mellit, Study and performance analysis of perovskite solar cell structure based on organic and inorganic thin films. Optik (Stuttg) 233, 1–8 (2021). https://doi.org/10.1016/j.ijleo.2021.166619

    Article  Google Scholar 

  7. F. Jannat, S. Ahmed, M.A. Alim, Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik (Stuttg) 228, 166202 (2021). https://doi.org/10.1016/j.ijleo.2020.166202

    Article  ADS  Google Scholar 

  8. S. Yasin, T. Al Zoubi, M. Moustafa, Design and simulation of high efficiency lead-free heterostructure perovskite solar cell using SCAPS-1D. Optik (Stuttg) 229, 166258 (2021). https://doi.org/10.1016/j.ijleo.2021.166258

    Article  ADS  Google Scholar 

  9. R. Toufanian, A. Piryatinski, A.H. Mahler et al., Bandgap engineering of indium phosphide-based core/shell heterostructures through shell composition and thickness. Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00567

    Article  Google Scholar 

  10. A.K. Patel, R. Mishra, S.K. Soni, Performance enhancement of CIGS solar cell with two-dimensional MoS2 hole transport layer. Micro Nanostruct. (2022). https://doi.org/10.1016/j.micrna.2022.207195

    Article  Google Scholar 

  11. A. Kumar, P. Ranjan, Defects signature in VOC characterization of thin-film solar cells. Sol. Energy 220, 35–42 (2021). https://doi.org/10.1016/j.solener.2021.03.017

    Article  ADS  Google Scholar 

  12. S.K. Agnihotri, D.P. Samajdar, D.V. Prashant, Z. Arefinia, Numerical analysis of InP based high efficiency radial junction nanowire solar cell. Opt. Mater. (Amst) (2021). https://doi.org/10.1016/j.optmat.2021.111365

    Article  Google Scholar 

  13. T. Ghorbani, M. Zahedifar, M. Moradi, E. Ghanbari, Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells. Optik (Stuttg) 223, 165541 (2020). https://doi.org/10.1016/j.ijleo.2020.165541

    Article  ADS  Google Scholar 

  14. A. Ouedraogo, T.S.M. Ky, A. Compaore, D.J. Bathiebo, Improvement in the silicon solar cell performance by integration of the electric field source in the solar cell under sunlight illumination. Arab. J. Sci. Eng. 44, 6651–6657 (2019). https://doi.org/10.1007/s13369-019-03906-7

    Article  Google Scholar 

  15. D.G. Buldu, J. De Wild, T. Kohl et al., A novel strategy for the application of an oxide layer to the front interface of Cu(In,Ga)Se2 thin film solar cells: Al2O3/HfO2 multi-stack design with contact openings. IEEE J. Photovolt. 12, 301–308 (2022). https://doi.org/10.1109/JPHOTOV.2021.3120515

    Article  Google Scholar 

  16. N. Khoshsirat, N.A. Md Yunus, M.N. Hamidon et al., ZnO doping profile effect on CIGS solar cells efficiency and parasitic resistive losses based on cells equivalent circuit ICCAS 2013-2013, in IEEE International Conference on Circuits and Systems, Advanced Circuits System Sustainability, (2013), p. 86–91. https://doi.org/10.1109/CircuitsAndSystems.2013.6671641

  17. J. Ramanujam, U.P. Singh, Copper indium gallium selenide-based solar cells—a review. Energy Environ. Sci. 10, 1306–1319 (2017). https://doi.org/10.1039/c7ee00826k

    Article  Google Scholar 

  18. M. Deo, R.K. Chauhan, Tweaking the performance of thin film CIGS solar cell using InP as a buffer layer. Optik (Stuttg) 273, 170357 (2022). https://doi.org/10.1016/j.ijleo.2022.170357

    Article  Google Scholar 

  19. S. Kumar, R.K. Chauhan, Performance up-gradation of CIGS solar cell using Ag2S quantum dot as a buffer layer. J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-00992-0

    Article  Google Scholar 

  20. N. Dhar, P. Chelvanathan, K.S. Rahman et al., Effect of p-type transition metal dichalcogenide molybdenum ditelluride (p-MoTe2) layer formation in cadmium telluride solar cells from numerical analysis, in IEEE Photovoltaic Specialists Conference, (2013), p. 3487–3492. https://doi.org/10.1109/PVSC.2013.6744244

  21. M.F. Islam, N.M. Yatim, M.A. Hashim, A review of CZTS thin film solar cell technology. J. Adv. Res. Fluid. Mech. Therm. Sci. 81, 73–87 (2021). https://doi.org/10.37934/arfmts.81.1.7387

    Article  Google Scholar 

  22. W. Chang, H. Tian, G. Fang et al., Simulation of innovative high-efficiency perovskite solar cell with Bi-HTL: NiO and Si thin films. Sol. Energy 186, 323–327 (2019). https://doi.org/10.1016/j.solener.2019.05.017

    Article  ADS  Google Scholar 

  23. M.S. Jamal, S.A. Shahahmadi, P. Chelvanathan et al., Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik (Stuttg) 182, 1204–1210 (2019). https://doi.org/10.1016/j.ijleo.2018.12.163

    Article  ADS  Google Scholar 

  24. N. Liu, L. Wang, F. Xu et al., Recent progress in developing monolithic perovskite/Si tandem solar cells. Front. Chem. 8, 1–22 (2020). https://doi.org/10.3389/fchem.2020.603375

    Article  Google Scholar 

  25. V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead-free perovskite solar cells using various hole transport materials by numerical simulation. Trans. Electr. Electron. Mater. (2022). https://doi.org/10.3389/fchem.2020.603375

    Article  Google Scholar 

  26. M. Mousa, F.Z. Amer, R.I. Mubarak, A. Saeed, Simulation of optimized high-current tandem solar cells with efficiency beyond 41%. IEEE Access 9, 49724–49737 (2021). https://doi.org/10.1109/ACCESS.2021.3069281

    Article  Google Scholar 

  27. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  ADS  Google Scholar 

  28. V. Srivastava, R.K. Chauhan, P. Lohia, Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00946-5

    Article  Google Scholar 

  29. O.K. Simya, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of kesterite-based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015). https://doi.org/10.1016/j.spmi.2015.02.020

    Article  ADS  Google Scholar 

  30. Y. Osman, M. Fedawy, M. Abaza, M.H. Aly, Optimized CIGS-based solar cell towards an efficient solar cell: impact of layers thickness and doping. Opt. Quantum Electron. 53, 1–16 (2021). https://doi.org/10.1007/s11082-021-02873-4

    Article  Google Scholar 

  31. A. Chetia, D. Saikia, S. Sahu, Design and optimization of the performance of CsPbI3 based vertical photodetector using SCAPS simulation. Optik (Stuttg) 269, 169804 (2022). https://doi.org/10.1016/j.ijleo.2022.169804

    Article  ADS  Google Scholar 

  32. M. Boubakeur, A. Aissat, M. Ben Arbia et al., Enhancement of the efficiency of ultra-thin CIGS/Si structure for solar cell applications. Superlattices Microstruct. 138, 1–9 (2020). https://doi.org/10.1016/j.spmi.2019.106377

    Article  Google Scholar 

  33. J. Lontchi, M. Zhukova, M. Kovacic et al., Optimization of back contact grid size in Al2O3-rear-passivated ultrathin CIGS PV cells by 2-D simulations. IEEE J. Photovolt. 10, 1908–1917 (2020). https://doi.org/10.1109/JPHOTOV.2020.3012631

    Article  Google Scholar 

  34. N. Mufti, T. Amrillah, A. Taufiq et al., Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 207, 1146–1157 (2020). https://doi.org/10.1016/j.solener.2020.07.065

    Article  ADS  Google Scholar 

  35. D. Bae, A statistical approach to scaling up of CIGS PV cells: quantitative analysis of composition uniformity within and between the samples. Mater. Sci. Semicond. Process 164, 107626 (2023). https://doi.org/10.1016/j.mssp.2023.107626

    Article  Google Scholar 

  36. T. Chargui, F. Lmai, M. Al-Hattab, O. Bajjou et al., Experimental and numerical study of the CIGS/CdS heterojunction solar cell. Opt. Mater. 140, 113849 (2023). https://doi.org/10.1016/j.optmat.2023.113849

    Article  Google Scholar 

  37. G. Rajan, K. Aryal et al., Characterization and Analysis of ultrathin CIGS films and solar cells deposited by 3-stage process. J. Spectrosc. 2018, 8527491 (2018). https://doi.org/10.1155/2018/8527491

    Article  Google Scholar 

  38. A.A. Odeh, R.M. Ayub, A.S. Ibraheam, Ultrasonic effect on optical, structural, topographical and morphological studies of Cu2CdSnS4 quaternary alloy nanostructures. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.06.235

    Article  Google Scholar 

  39. A. Chiu, E. Rong, C. Bambini et al., Sulfur-infused hole transport materials to overcome performance-limiting transport in colloidal quantum dot solar cells. ACS Energy Lett. 5, 2897–2904 (2020). https://doi.org/10.1021/acsenergylett.0c01586

    Article  Google Scholar 

  40. K. Bertens, J.Z. Fan, M. Biondi et al., Colloidal quantum dot solar cell band alignment using two-step ionic doping. ACS Mater. Lett. 2, 1583–1589 (2020). https://doi.org/10.1021/acsmaterialslett.0c00379

    Article  Google Scholar 

  41. A. Sharma, N.V. Dambhare, J. Bera et al., Crack-free conjugated PbS quantum dot-hole transport layers for solar cells. ACS Appl. Nano Mater. 4, 4016–4025 (2021). https://doi.org/10.1021/acsanm.1c00373

    Article  Google Scholar 

  42. P. Zhang, M. Li, W.C. Chen, A perspective on perovskite solar cells: emergence, progress, and commercialization. Front. Chem. 10, 1–9 (2022). https://doi.org/10.3389/fchem.2022.802890

    Article  ADS  Google Scholar 

  43. A. Khanna, R. Pandey, J. Madan, A. Dhingra, Comprehensive device simulation of 16.9% efficient two-terminal PbS–PbS CQD tandem solar cell. Opt. Mater. (Amst) (2021). https://doi.org/10.1016/j.optmat.2021.111677

    Article  Google Scholar 

  44. R. Chaurasiya, G.K. Gupta, A. Dixit, Ultrathin Janus WSSe buffer layer for W(S/Se)2 absorber-based solar cells: a hybrid, DFT and macroscopic, simulation studies. Sol. Energy Mater. Sol. Cells 201, 110076 (2019). https://doi.org/10.1016/j.solmat.2019.110076

    Article  Google Scholar 

  45. M. Moustafa, T. Al Zoubi, Effect of the n-MoTe2 interfacial layer in cadmium telluride solar cells using SCAPS. Optik (Stuttg) 170, 101–105 (2018). https://doi.org/10.1016/j.ijleo.2018.05.112

    Article  ADS  Google Scholar 

  46. A. Kumar, A.K. Thakur, Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.08RC05

    Article  Google Scholar 

  47. V. Vallisree, A. Sharma, R. Thangavel, T.R. Lenka, Investigations of carrier transport mechanism and junction formation in Si/CZTS dual absorber solar cell technology. Appl. Phys. A Mater. Sci. Process (2020). https://doi.org/10.1007/s00339-020-3343-9

    Article  Google Scholar 

  48. M. Asaduzzaman, M. Hasan, A.N. Bahar, An investigation into the effects of bandgap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency. Springerplus (2016). https://doi.org/10.1186/s40064-016-2256-8

    Article  Google Scholar 

  49. S.H. Song, S.A. Campbell, Heteroepitaxy and the performance of CIGS solar cells, in IEEE Photovoltaic Specialists Conference, vol. 2, (2013), p. 2534–2539. https://doi.org/10.1109/PVSC.2013.6744991

  50. A. Bag, R. Radhakrishnan, R. Nekovei, R. Jeyakumar, Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020). https://doi.org/10.1016/j.solener.2019.12.014

    Article  ADS  Google Scholar 

  51. N. Touafek, R. Mahamdi, Back surface recombination effect on the ultra-thin CIGS solar cells by SCAPS. Int. J. Renew. Energy Res. 4, 958–964 (2014)

    Google Scholar 

  52. M.A. Green, General temperature dependence of solar cell performance and implications for device modeling. Prog. Photovolt. Res. Appl. 11, 333–340 (2003). https://doi.org/10.1002/pip.496

    Article  Google Scholar 

  53. P. Jackson, R. Wuerz, D. Hariskos et al., Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi-Rapid Res. Lett. 10, 583–586 (2016). https://doi.org/10.1002/pssr.201600199

    Article  ADS  Google Scholar 

  54. N.E.I. Boukortt, S. Patanè, Y.M. Abdulraheem, Numerical investigation of CIGS thin-film solar cells. Sol. Energy 204, 440–447 (2020). https://doi.org/10.1016/j.solener.2020.05.021

    Article  ADS  Google Scholar 

  55. N. Kohara, S. Nishiwaki, Y. Hashimoto et al., Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure. Sol. Energy Mater. Sol. Cells 67, 209–215 (2001). https://doi.org/10.1016/S0927-0248(00)00283-X

    Article  Google Scholar 

  56. A.K. Patel, R. Mishra, S.K. Soni, Performance of a Cu(In1−xGax)Se2 solar cell with nontoxic WS2 and WSSe buffer layer. J. Electron. Mater. 50, 3603–3613 (2022). https://doi.org/10.1007/s11664-022-09863-6

    Article  Google Scholar 

  57. S. Youn, M. Park, J. Kim, C. Jeong, Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer. J. Alloys Compd. 836, 154803 (2020). https://doi.org/10.1016/j.jallcom.2020.154803

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to developers (Burgelman and colleagues) of SCAP-1D for providing this software free of charge for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Deo.

Ethics declarations

Conflict of interest

The corresponding author states on behalf of all the authors that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deo, M., Chauhan, R.K. & Kumar, M. Optimization and performance enhancement of InP/CIGS/CuI solar cell using bandgap grading. J Opt 53, 1224–1234 (2024). https://doi.org/10.1007/s12596-023-01335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01335-2

Keywords

Navigation