Skip to main content
Log in

A hybrid iterative Fourier ptychographic microscopy algorithm based on fusion of random phase perturbation and gradient descent strategy

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Fourier ptychographic microscopy (FPM) incorporates the phase recovery and synthetic aperture to achieve large field of view, high resolution, and large spatial bandwidth product with quantitative phase imaging simultaneously without precise mechanical scanning. However, in the conventional imaging process, the reconstructed object resolution is degraded and the reconstruction quality is not high because of the slow convergence of the iterative algorithm and the tendency to fall into local minima. To address the above problems, this paper proposes an iterative FPM algorithm that fuses phase perturbation factor and gradient descent in the spatial-frequency domain and embeds an aberration correction method in the reconstruction process. The algorithm is embedded into the software platform for simulated and real experiments. The experimental results show that the iteration error of the proposed method is reduced by 1.5 times compared with that of the traditional iterative method per unit number of iterations, and the convergence speed is significantly improved while the accuracy and resolution of the reconstructed objects are guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Sun, X. Chen, Y. Zhu et al., Neural network model combined with pupil recovery for Fourier ptychographic microscopy. Opt. Express 27(17), 24161–24174 (2019). https://doi.org/10.1364/oe.27.024161

    Article  ADS  Google Scholar 

  2. G. Zheng, R. Horstmeyer, C. Yang, Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7(9), 739–745 (2013). http://www.nature.com/doifinder/10.1038/nphoton.2013.187

  3. G. Zheng, C. Shen, S. Jiang et al., Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 3(3), 207–223 (2021). https://doi.org/10.1038/s42254-021-00280-y

    Article  Google Scholar 

  4. J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982). https://doi.org/10.1364/ao.21.002758

    Article  ADS  Google Scholar 

  5. Y. Shechtman, Y.C. Eldar, O. Cohen et al., Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015). https://doi.org/10.1109/msp.2014.2352673

    Article  ADS  Google Scholar 

  6. H. Wang, W. Yue, Q. Song et al., A hybrid Gerchberg–Saxton-like algorithm for DOE and CGH calculation. Opt. Lasers Eng. 89, 109–115 (2017). https://doi.org/10.1016/j.optlaseng.2016.04.005

    Article  Google Scholar 

  7. S.A. Alexandrov, T.R. Hillman, T. Gutzler et al., Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 97(16), 168102 (2006). https://doi.org/10.1103/PhysRevLett.97.168102

    Article  ADS  Google Scholar 

  8. T.R. Hillman, T. Gutzler, S.A. Alexandrov et al., High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express 17(10), 7873–7892 (2009). https://doi.org/10.1364/oe.17.007873

    Article  ADS  Google Scholar 

  9. L.-H. Yeh, J. Dong, J. Zhong et al., Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express 23(26), 33214–33240 (2015). https://doi.org/10.1364/oe.23.033214

    Article  ADS  Google Scholar 

  10. C. Zuo, J. Sun, Q. Chen, Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express 24(18), 20724–20744 (2016). https://doi.org/10.1364/oe.24.020724

    Article  ADS  Google Scholar 

  11. X. Ou, G. Zheng, C. Yang, Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express 22(5), 4960–4972 (2014). https://doi.org/10.1364/oe.22.004960

    Article  ADS  Google Scholar 

  12. R. Eckert, Z.F. Phillips, L. Waller, Efficient illumination angle self-calibration in Fourier ptychography. Appl. Opt. 57(19), 5434–5442 (2018). https://doi.org/10.1364/ao.57.005434

    Article  ADS  Google Scholar 

  13. J. Zhang, T. Xu, J. Liu et al., Precise brightfield localization alignment for Fourier ptychographic microscopy. IEEE Photonics J. 10(1), 1–13 (2017). https://doi.org/10.1109/jphot.2017.2780189

    Article  Google Scholar 

  14. V. A. Soifer, V. Kotlar, L. Doskolovich. Iteractive Methods for Diffractive Optical Elements Computation (CRC Press, 2014). https://doi.org/10.1016/S0143-8166(97)00114-0

  15. C. Guo, S. Liu, J.T. Sheridan, Iterative phase retrieval algorithms. I: optimization. Appl. Opt. 54(15), 4698–4708 (2015). https://doi.org/10.1364/ao.54.004698

    Article  ADS  Google Scholar 

  16. U. Gopinathan, D.S. Monaghan, T.J. Naughton et al., A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt. Express 14(8), 3181–3186 (2006). https://doi.org/10.1364/OE.14.003181

    Article  ADS  Google Scholar 

  17. A.W. Lohmann, Matched filtering with self-luminous objects. Appl. Opt. 7(3), 561–563 (1968). https://doi.org/10.1364/ao.7.0561_1

    Article  ADS  Google Scholar 

  18. D.A. Naylor, M.K. Tahic, Apodizing functions for Fourier transform spectroscopy. JOSA A 24(11), 3644–3648 (2007). https://doi.org/10.1364/JOSAA.24.003644

    Article  ADS  Google Scholar 

  19. F. Zhang, Y. Zhou, Q. You et al., Fourier ptychographic microscopy based on a weighted apodized transfer function constraint. Acta Optic Sinica 41(04), 0411001 (2021). https://doi.org/10.1016/j.optcom.2021.127344

    Article  Google Scholar 

  20. H. Roarke, X. Ou, G. Zheng et al., Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph. 42, 38–43 (2015). https://doi.org/10.1016/j.compmedimag.2014.11.005

    Article  Google Scholar 

  21. http://www.laurawaller.com/opensource/

Download references

Funding

Natural Science Foundation of Higher Education Institutions of Anhui Province (Nos. KJ2020ZD02, KJ2019ZD04, 2022AH050089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Cheng, H., Sun, S. et al. A hybrid iterative Fourier ptychographic microscopy algorithm based on fusion of random phase perturbation and gradient descent strategy. J Opt 53, 1336–1344 (2024). https://doi.org/10.1007/s12596-023-01267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01267-x

Keywords

Navigation