Skip to main content
Log in

Design of plasmonic nanoparticles for increasing efficiency and absorptance in thin-film solar cells

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Plasmonic structures are desirable methods of improving localized light absorption and improving the performance of thin solar cells. The metal nanostructures control light concentration and trap at a submicrometric scale. This paper presents a metal–insulator-metal waveguide for improving solar cell absorption and efficiency. According to the obtained results, the proposed method achieved high absorption compared to the previous methods. We use the combination of the Binary Particle Swarm Optimization (BPSO) algorithm with the Binary-Coupled Dipole Approximation (BCDA). A three-dimensional BCDA model can be used to model metal nanoparticles with nonperiodic structures. We use this combination to find the best array of nanoparticles. Note, in this design, the angle of incidence is necessary to increment the absorption. This increment is 60% with 65 degrees of incidence. Also, according to this increment of absorption, the proposed method achieved 55% higher performance than the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Akhavan, and S. Manoochehri, (2022) Sensory data fusion using machine learning methods for in-situ defect registration in additive manufacturing: a review. In 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2022: IEEE, 1–10

  2. T. Taami, S. Krug, and M. O’Nils (2019) “Experimental characterization of latency in distributed iot systems with cloud fog offloading,” In 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), 2019: IEEE, 1–4

  3. P. He, N. Almasifar, A. Mehbodniya, D. Javaheri, J.L. Webber, Towards green smart cities using Internet of Things and optimization algorithms: a systematic and bibliometric review. Sustainable Computing: Informatics and Systems 36, 100822 (2022)

    Google Scholar 

  4. I. Ataie, T. Taami, S. Azizi, M. Mainuddin, and D. Schwartz (2022) “D 2 FO: distributed dynamic offloading mechanism for time-sensitive tasks in fog-cloud IoT-based systems,” In 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC), 2022:360–366 (2022).

  5. S. Meisami, M. Beheshti-Atashgah, and M. R. Aref (2021) “Using blockchain to achieve decentralized privacy In IoT healthcare,” arXiv preprint arXiv:2109.14812, (2021).

  6. F. Vahedifard, S. Hassani, A. Afrasiabi, A.M. Esfe, Artificial intelligence for radiomics; diagnostic biomarkers for neuro-oncology. World Journal of Advanced Research and Reviews 14, 304–310 (2022)

    CAS  Google Scholar 

  7. S. A. Saeidi, F. Fallah, S. Barmaki, and H. Farbeh (2022) “A novel neuromorphic processors realization of spiking deep reinforcement learning for portfolio management,” In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022: IEEE, 68–71

  8. S. Seyedi, B. Pourghebleh, A new design for 4-bit RCA using quantum cellular automata technology. Optical and Quantum Electronics 55, 11 (2023)

    Google Scholar 

  9. S. Seyedi, B. Pourghebleh, N. Jafari Navimipour, A new coplanar design of a 4-bit ripple carry adder based on quantum-dot cellular automata technology. IET Circuits, Devices & Systems 16, 64–70 (2022)

    Google Scholar 

  10. S. H. Haghshenas, M. A. Hasnat, and M. Naeini, (2022) “A Temporal Graph Neural Network for Cyber Attack Detection and Localization in Smart Grids,” arXiv preprint arXiv:2212.03390

  11. A. Mehbodniya, J.L. Webber, R. Neware, F. Arslan, R.V. Pamba, M. Shabaz, Modified lamport merkle digital signature blockchain framework for authentication of internet of things healthcare data. Expert Systems 39, 12978 (2022)

    Google Scholar 

  12. M. Mohseni, F. Amirghafouri, B. Pourghebleh, CEDAR: a cluster-based energy-aware data aggregation routing protocol in the internet of things using capuchin search algorithm and fuzzy logic. Peer-to-Peer Networking and Applications 6(1), 1–21 (2022)

    Google Scholar 

  13. F. Khosravi, M. Tarhani, S. Kurle, and M. Shadaram, (2022) “Implementation of an elastic reconfigurable optical add/drop multiplexer based on subcarriers for application in optical multichannel networks,” In 2022 International Conference on Electronics, Information, and Communication (ICEIC), 2022: IEEE, 1–4 (2022).

  14. F. Khosravi, G. Mahdiraji, M. Mokhtar, A. Abas, M. Mahdi, Improving the performance of three level code division multiplexing using the optimization of signal level spacing. Optik 125, 5037–5040 (2014)

    ADS  Google Scholar 

  15. A. Ahmadpour, S.G. Farkoush, Gaussian models for probabilistic and deterministic wind power prediction: wind farm and regional. International Journal of Hydrogen Energy 45, 27779–27791 (2020)

    CAS  Google Scholar 

  16. A. Kumar, S.A. Alghamdi, A. Mehbodniya, J.L. Webber, S.N. Shavkatovich, Smart power consumption management and alert system using IoT on big data. Sustainable Energy Technologies and Assessments 53, 102555 (2022)

    Google Scholar 

  17. B. Pourghebleh, N. Hekmati, Z. Davoudnia, M. Sadeghi, A roadmap towards energy-efficient data fusion methods in the Internet of Things. Concurrency and Computation: Practice and Experience 34(15), e6959 (2022)

    Google Scholar 

  18. A. Ahmadpour, A. Dejamkhooy, H. Shayeghi, Optimization and modelling of linear Fresnel reflector solar concentrator using various methods based on Monte Carlo Ray-Trace. Solar Energy 245, 67–79 (2022)

    ADS  Google Scholar 

  19. J.A. Duffie, W.A. Beckman, Solar energy thermal processes (University of Wisconsin-Madison, Solar Energy Laboratory, Madison, WI, 1974)

    Google Scholar 

  20. C.A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 76, 423–453 (2004)

    ADS  Google Scholar 

  21. C. B. Honsberg, R. C. Corkish, and S. P. Bremner (2001) “A new generalized detailed balance formulation to calculate solar cell efficiency limits,” 2001: Georgia Institute of Technology.

  22. J.D. Winans, C. Hungerford, K. Shome, L.J. Rothberg, P.M. Fauchet, Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both. Optics. Express 23, A92–A105 (2015)

    CAS  PubMed  ADS  Google Scholar 

  23. K. Zhou et al., The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector. Optics Express 20, A777–A787 (2012)

    CAS  PubMed  ADS  Google Scholar 

  24. Y. Zhan, J. Zhao, C. Zhou, X. Wang, Y. Li, Y. Li, Surface-plasma-coupled photovoltaic cell with double-layered triangular grating. IEEE Photonics Journal 4, 1021–1026 (2012)

    ADS  Google Scholar 

  25. W.-J. Ho, C.-H. Lin, and Y.-Y. Lee, (2014) “Photovoltaic performance enhancement of plasmonics silicon solar cells using indium nanoparticles embedded in Al2O3/TiO2 layer structure,” In Nanoelectronics Conference (INEC), 2014 IEEE International, 2014: IEEE, 1–3

  26. Z. Xu et al., Light-trapping properties of the Si inclined nanowire arrays. Optics Communications 382, 332–336 (2017)

    CAS  ADS  Google Scholar 

  27. S. Morawiec, M.J. Mendes, F. Priolo, I. Crupi, Plasmonic nanostructures for light trapping in thin-film solar cells. Materials Science in Semiconductor Processing 92, 10–18 (2019)

    CAS  Google Scholar 

  28. M.H. Mohammadi, D. Fathi, M. Eskandari, Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: a numerical study. Energy Report 7, 1404–1415 (2021)

    Google Scholar 

  29. M.A. Shameli, L. Yousefi, Light trapping in thin film crystalline silicon solar cells using Multi-Scale photonic topological insulators. Optics and Laser Technology 145, 107457 (2022)

    Google Scholar 

  30. M. Akhlaghi, F. Emami, M.S. Sadeghi, M. Yazdanypoor, Simulation and optimization of nonperiodic plasmonic nano-particles. Journal of the Optical Society of Korea 18, 82–88 (2014)

    Google Scholar 

  31. M.A. Green, Solar cells: operating principles, technology, and system applications. Englewood Cliffs, NJ, Prentice-Hall Inc 1982, 288 (1982)

    ADS  Google Scholar 

  32. A. Shah et al., Thin-film silicon solar cell technology. Progress in photovoltaics: Research and applications 12, 113–142 (2004)

    CAS  ADS  Google Scholar 

  33. Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications (Springer, 2013)

    Google Scholar 

  34. G. Conibeer et al., Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511, 654–662 (2006)

    ADS  Google Scholar 

  35. M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14, 65–70 (2002)

    CAS  ADS  Google Scholar 

  36. J.Y. Kim et al., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    CAS  PubMed  ADS  Google Scholar 

  37. K. Chopra, P. Paulson, V. Dutta, Thin-film solar cells: an overview. Progress in photovoltaics: Research and applications 12, 69–92 (2004)

    CAS  Google Scholar 

  38. K. Takahashi, M. Konagai, Amorphous silicon solar cells. New York, Wiley 1986, 237 (1986)

    ADS  Google Scholar 

  39. T.D. Lee, A.U. Ebong, A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Review 70, 1286–1297 (2017)

    CAS  Google Scholar 

  40. L. Kazmerski, F. White, G. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letter 29, 268–270 (1976)

    CAS  ADS  Google Scholar 

  41. B.E. Mccandless, J.R. Sites, Cadmium telluride solar cells Handbook of photovoltaic science and engineering (Wiley, Neywork, 2003), pp.617–662

    Google Scholar 

  42. X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy 77, 803–814 (2004)

    CAS  ADS  Google Scholar 

  43. K. Catchpole, A. Polman, Design principles for particle plasmon enhanced solar cells Appl. Physics Letter 93, 191113 (2008)

    ADS  Google Scholar 

  44. S. Pillai, K. Catchpole, T. Trupke, M. Green, Surface plasmon enhanced silicon solar cells. Journal of Applied Physics 101, 093105 (2007)

    ADS  Google Scholar 

  45. K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters 7, 69–74 (2007)

    CAS  PubMed  ADS  Google Scholar 

  46. Q. Fu, W. Sun, Mie theory for light scattering by a spherical particle in an absorbing medium. Applied Optics 40, 1354–1361 (2001)

    CAS  PubMed  ADS  Google Scholar 

  47. M. Losurdo, M.M. Giangregorio, G.V. Bianco, A. Sacchetti, P. Capezzuto, G. Bruno, Enhanced absorption in Au nanoparticles/a-Si: H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Material and Solar Cells 93, 1749–1754 (2009)

    CAS  Google Scholar 

  48. P. Luo, E. Moulin, J. Sukmanowski, F. Royer, X. Dou, H. Stiebig, Enhanced infrared response of ultra thin amorphous silicon photosensitive devices with Ag nanoparticles. Thin Solid Films 517, 6256–6259 (2009)

    CAS  ADS  Google Scholar 

  49. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Efficiency limits for single-junction and tandem solar cells. Solar Energy Material Solar Cells 90, 2952–2959 (2006)

    CAS  Google Scholar 

  50. V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Letter 8, 4391–4397 (2008)

    CAS  ADS  Google Scholar 

  51. R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Material 21, 3504–3509 (2009)

    CAS  Google Scholar 

  52. B. Jia et al., Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules [Invited]. Photon Research 1, 22–27 (2013)

    Google Scholar 

  53. K.R. Catchpole, A. Polman, Plasmonic solar cells. Optics Express 16, 21793–21800 (2008)

    CAS  PubMed  ADS  Google Scholar 

  54. V.E. Ferry, J.N. Munday, H.A. Atwater, Design considerations for plasmonic photovoltaics. Advanced Material 22, 4794–4808 (2010)

    CAS  Google Scholar 

  55. C. Min et al., All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Optics Letter 33, n869-871 (2008)

    ADS  Google Scholar 

  56. P. Matheu, S. Lim, D. Derkacs, C. McPheeters, E. Yu, Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Applied Physics Letter 93, 113108 (2008)

    ADS  Google Scholar 

  57. J.N. Munday, H.A. Atwater, Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Letter 11, 2195–2201 (2010)

    ADS  Google Scholar 

  58. J.R. Cole, N. Halas, Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Applied Physics Letter 89, 153120 (2006)

    ADS  Google Scholar 

  59. F. Beck, A. Polman, K. Catchpole, Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics 105, 114310 (2009)

    ADS  Google Scholar 

  60. A. English, C.-W. Cheng, L. Lowe, M.-H. Shih, W. Kuang, Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating. Applied Physics Letter 98, 191113 (2011)

    ADS  Google Scholar 

  61. M.A. Taubenblatt, T.K. Tran, Calculation of light scattering from particles and structures on a surface by the coupled-dipole method. JOSA A 10, 912–919 (1993)

    ADS  Google Scholar 

  62. N. Adamovic, U. Schmid, Potential of plasmonics in photovoltaic solar cells. e and i Elektrotechnik und informationstechnik 128, 342–347 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun ping.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ping, S. Design of plasmonic nanoparticles for increasing efficiency and absorptance in thin-film solar cells. J Opt 53, 404–415 (2024). https://doi.org/10.1007/s12596-023-01180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01180-3

Keywords

Navigation