Skip to main content
Log in

Modeling and analysis of photonic sensor based on ring resonator for glucose detection

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Diabetes is today’s major global problem. Continuous monitoring of blood/urine glucose level is prerequisite for diabetic patient. In the proposed work we consider the two-dimensional photonic crystal-based biosensor for detecting glucose level in human body. Two-ring resonator structure such as horizontal loop double ring resonator and vertical loop double ring resonator is considered. Wavelength shift is obtained for identification of glucose level in blood and urine. Quality factor, sensitivity and transmission efficiency of designed sensor is investigated. Maximum quality factor 12,343 is obtained for horizontal loop double ring resonator structure compared to vertical loop double ring resonator structure. Sensitivity of 5681 nm/RIU is obtained for horizontal loop ring resonator structure. Maximum wavelength range is obtained for horizontal loop double ring resonator structure. The result obtained shows promising for future fabrication feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. American diabetes association professional practice committee 7. Diabetes technology: standards of medical care in diabetes. 45 (1), S97–S112 (2022) https://doi.org/10.2337/dc22-S007

  2. T. Tajima, M. Nakamura, Y. Tanaka, M. Seyama, Advances in noninvasive glucose sensing enabled by photonics, acoustics, and microwaves. Int. J. Autom Technol. 12(1), 64–72 (2018)

    Article  Google Scholar 

  3. S. Ameta, A. Sharma and P.K. Inaniya, in Designing a Multichannel Nanocavity Coupled Photonic Crystal Biosensor for Detection of Glucose Concentration in Blood. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). (2017), pp. 1–4. https://doi.org/10.1109/ICCCNT.2017.820400

  4. S. Robinson, N. Dhanlaksmi, Photonic crystal-based biosensor for the detection of glucose concentration in urine. Photonic Sens. 7, 11–19 (2017)

    Article  ADS  Google Scholar 

  5. M. Rahaman, R.H. Jibon, R.M. Ahsan, Glucose level measurement using photonic crystal fiber-based plasmonic sensor. Plasmonics. (2021). https://doi.org/10.1007/s11468-021-01497-4

    Article  Google Scholar 

  6. A. Rashidnia, H. Pakarzadeh, M. Hatami, N. Ayyanar, Photonic crystal-based biosensor for detection of human red blood cells parasitized by plasmodium falciparum. Opt. Quantum Electron. Res. Sq. (2021). https://doi.org/10.21203/rs.3.rs-655711/v1

    Article  Google Scholar 

  7. H. Inan, M. Poyraz, F. Inci, Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 46(2), 366–388 (2017). https://doi.org/10.1039/c6cs00206d

    Article  Google Scholar 

  8. A. Paul, A.K. Sarkar and S. Razzak, in Graphene Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance, 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), (2017), pp. 856–859. https://doi.org/10.1109/R10-HTC.2017.8289088

  9. W.M. Nouman, A. El-Ghany, S.M. Sallam, A.F.B. Dawood, A.H. Aly, Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quantum Electron. 52, 287 (2020). https://doi.org/10.1007/s11082-020-02409-2

    Article  Google Scholar 

  10. A. Panda, P.D. Pukhrambam, Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus 136, 809 (2021). https://doi.org/10.1140/epjp/s13360-021-01796-z

    Article  Google Scholar 

  11. S. Ankita, B. Bhargava, Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics 16, 59–63 (2021). https://doi.org/10.1007/s11468-020-01259-8

    Article  Google Scholar 

  12. M. Ibrahim, M. Tarek, S.S.A. Obayya and M.F.O. Hameed, Highly Sensitive 1D Photonic Crystal Biosensor, in 2021 International Applied Computational Electromagnetics Society Symposium (ACES), (2021), pp. 1–2. https://doi.org/10.1109/ACES53325.2021.00089

  13. B. Kumar, P. Srikanth, A. Vaibhav, A novel computation method for detection of malaria in RBC using photonic biosensor. Int. J. Inf. Technol. (2021). https://doi.org/10.1007/s41870-021-00782-z

    Article  Google Scholar 

  14. P. Yashaswini, H. Gayathri, P. Srikanth, Performance analysis of photonic crystal-based biosensor for the detection of bio-molecules in urine and blood. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.06.192

    Article  Google Scholar 

  15. H. Kumar, B. Nikhil, M.N. Sreerangaraju, Design and computational analysis of photonic crystal sensor to detect acoustic signals for underwater applications using finite difference time domain algorithm. Int. J. Inf. Technol. 13, 613–619 (2021). https://doi.org/10.1007/s41870-020-00608-4

    Article  Google Scholar 

  16. B. Kumar, P. Srikanth, A. Vaibhav, A novel computation method for detection of malaria in RBC using photonic biosensor. Int. J. Inf. Technol. 13, 2053–2058 (2021). https://doi.org/10.1007/s41870-021-00782-z

    Article  Google Scholar 

  17. J. Joannopoulos, P. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light. Nature 386(6621), 143–149 (1997). https://doi.org/10.1038/386143a0

    Article  ADS  Google Scholar 

  18. R. Meade, A. Rappe, K. Brommer, J. Joannopoulos, Existence of a photonic band gap in two dimensions. Appl. Phys. Lett. 61(4), 495–497 (1992). https://doi.org/10.1063/1.107868

    Article  ADS  Google Scholar 

  19. X. Fan, I. White, S. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620(1–2), 8–26 (2008). https://doi.org/10.1016/j.aca.2008.05.022

    Article  Google Scholar 

  20. P. Sharma, S. K. Roy, P. Sharan, Design and Simulation of Photonic Crystal-Based Biosensor for Detection of Different Blood Components, in Proceedings of the IEEE Region 10 Symposium, (Kuala Lumpur, Malaysia, 2014), pp. 171–176. https://doi.org/10.1109/TENCONSpring.2014.6863019

  21. Blood Glucose Monitoring-Wikipedia, The Free Encyclopedia (2014) http://en.wikipedia.org/wiki/Blood_glucose_monitoring

  22. Fluorescent Glucose Biosensor the Free Encyclopedia (2015). http://en.wikipedia.org/wiki/Fluorescent_glucose_monitoring.

  23. S. Ajey, H. Bhanumathi, P. Srikanth, Highly sensitive photonic crystal-based biosensor for bacillus cereus. Int. J. Inf. Technol. 12, 1393–1402 (2020). https://doi.org/10.1007/s41870-020-00507-8

    Article  Google Scholar 

  24. S. Nehal, D. Roy, Highly sensitive lab-on-chip with deep learning AI for detection of bacteria in water. Int. J. Inf. Tecnol. 12, 495–501 (2020). https://doi.org/10.1007/s41870-019-00363-1

    Article  Google Scholar 

  25. R. Rajendran, G. Rayman, Point-of-care blood glucose testing for diabetes care in hospitalized patients: an evidence-based review. J. Diabetes. Sci. Technol. 8(6):1081–1090 (2014). https://doi.org/10.1177/1932296814538940

  26. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987). https://doi.org/10.1103/PhysRevLett.58.2059

    Article  ADS  Google Scholar 

  27. M. Lee, P. Fauchet, Two-dimensional silicon photonic crystal-based biosensor platform for protein detection. Opt. Express. 15(8), 4530–4535 (2007). https://doi.org/10.1364/OE.15.004530

    Article  ADS  Google Scholar 

  28. J. Joannopoulos, R. Meade, and J. Winn, Photonic crystal: modeling of Flow of Light. Princeton: Princeton University Press (1995). http://ab-initio.mit.edu/book/photonic-crystals-book.pdf

  29. T. Lin, A. Gal, Y. Mayzel, K. Horman, K. Bahartan, Non-invasive glucose monitoring: a review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci. 6, 1–8 (2017). https://doi.org/10.19080/CTBEB.2017.06.555696

    Article  Google Scholar 

  30. A. Upadhyaya, P. Sharan, M. Srivastava, Micro-opto-electro-mechanical system based microcantilever sensor for biosensing applications. J. Opt. Soc. Am. B 39, 1736–1742 (2022). https://doi.org/10.1364/JOSAB.455702

    Article  ADS  Google Scholar 

  31. R. Mathias, A. Ambalgi, A. Upadhyaya, Grating based pressure monitoring system for subaquatic application. Int. J. Inf. Tecnol. 10, 551–557 (2018). https://doi.org/10.1007/s41870-018-0128-x

    Article  Google Scholar 

  32. A. Upadhyaya, M. Srivastava, P. Sharan, Performance analysis of optomechanical-based microcantilever sensor with various geometrical shapes. Microwav. Opt. Technol. Lett. 63, 1319–1327 (2021). https://doi.org/10.1002/mop.32652

    Article  Google Scholar 

  33. P. Sharan, K. Sandhya, K. Barya, Design and analysis of moems based displacement sensor for detection of muscle activity in human body. Int. J. Inf. Technol. 13, 397–402 (2021). https://doi.org/10.1007/s41870-020-00533-6

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks faculty and researchers of BTI College of Engineering, Bangalore, and PDA College of Engineering, Kalburgi, Karnataka, India, for providing research supports and suggestion in completing this manuscript successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ambika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambika, S., Vanjerkhede, K. Modeling and analysis of photonic sensor based on ring resonator for glucose detection. J Opt 52, 1837–1844 (2023). https://doi.org/10.1007/s12596-022-01081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01081-x

Keywords

Navigation