Skip to main content
Log in

Dual optical bistabilities in Octonacci photonic multilayers doped by graphene

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We theoretically investigate the optical bistability in a compound structure which is composed by graphene and photonic multilayers. The photonic multilayers are stacked by different dielectrics and of which the arrangement order is submitted to the Octonacci sequence. The Octonacci lattices are aperiodic and support optical fractal resonance states. These fractal modes split exponentially as the generation number of sequence increases. Especially, the optical fractal states have strong electric field localization, which could be utilized to enhance the nonlinearity of graphene. Consequently, low-threshold dual optical bistabilities are achieved as graphene is embedded around the strongest intensity site of electric field. The two optical bistabilities are separated and of which the upper and lower thresholds of bistability can be modulated by the chemical potential of graphene and the incident wavelength flexibly. This study may be helpful in designing all-optical multivalued switches, optical memory and optical logic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Li, Y. Chen, R. Wan, H. Yan, Dynamical switching and memory via incoherent pump assisted optical bistability. Phys. Lett. A. 383, 2248–2254 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  2. A.A. NikitinIlya, I.A. Ryabcev, A.V. Kondrashov, Optical bistable SOI micro-ring resonators for memory applications. Opt. Commun. 511, 127929 (2022)

    Google Scholar 

  3. J. Shiri, J. Khalilzadeh, S.H. Asadpour, Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots. Laser Phys. 31(036202), 3 (2021)

    Google Scholar 

  4. C. Mao, D. Zhong, F. Liu, L. Wang, D. Zhao, Multiple optical bistabilities in graphene arrays-bulk dielectric composites. Opt. Laser Technol. 154, 108292 (2022)

    Google Scholar 

  5. Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. Yu, D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics. J. Mater. Chem. C. 5(12), 3007–3013 (2017)

    Google Scholar 

  6. Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, H. Zhang, Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon. Res. 7(5), 494–502 (2019)

    Google Scholar 

  7. L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li, W. Huang, Z. Lin, Y. Wang, F. Zhang, S. Lu, Y. Xiang, S. Xu, J. Li, H. Zhang, Mxene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photon. Rev. 12(12), 1800215 (2018)

    ADS  Google Scholar 

  8. W. Chen, F. Zhang, C. Wang, M. Jia, X. Zhao, Z. Liu, Y. Ge, Y. Zhang, H. Zhang, Nonlinear photonics using low-dimensional metal-halide perovskites: recent advances and future challenges. Adv. Mater. 33(11), 2004446 (2021)

    Google Scholar 

  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, Double-layer graphene optical modulator. Nature 474, 64–67 (2011)

    ADS  Google Scholar 

  10. X. Cheng, N. Dong, B. Li, X. Zhang, J. Wang, Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure. Opt. Express. 21, 16486–16493 (2013)

    ADS  Google Scholar 

  11. C. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. Tsai, L. Li, Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009)

    Google Scholar 

  12. H. Wang, J. Wu, J. Guo, L. Jiang, Y. Xiang, S. Wen, Low-threshold optical bistability with multilayer graphene-covering Otto configuration. J. Phys. D Appl. Phys. 49, 255306 (2016)

    ADS  Google Scholar 

  13. C. Horvath, D. Bachman, R. Indoe, Photothermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator. Opt. Lett. 38, 5036–5039 (2013)

    ADS  Google Scholar 

  14. H. Zhao, Z. Li, Low-threshold optical bistability in metal-nonlinear dielectric multilayer nanostructure. Europhys. Lett. 102, 24003 (2013)

    ADS  Google Scholar 

  15. Y. Peng, J. Xu, H. Dong, X. Dai, L. Jiang, Graphene-based low-threshold and tunable optical bistability in one-dimensional photonic crystal Fano resonance heterostructure at optical communication band. Opt. Express. 28, 34948 (2020)

    ADS  Google Scholar 

  16. X. Dai, L. Jiang, Y. Xiang, Tunable optical bistability of dielectric/nonlinear graphene/dielectric heterostructures. Opt. Express. 23, 6497–6508 (2015)

    ADS  Google Scholar 

  17. L. Jiang, J. Guo, L.M. Wu, X. Dai, Y. Xiang, Manipulating the optical bistability at terahertz frequency in the Fabry–Perot cavity with graphene. Opt. Express. 23, 31181 (2015)

    ADS  Google Scholar 

  18. F. Azadpour, A. Bahari, All-optical bistability based on cavity resonances in nonlinear photonic crystal slab-reflector-based Fabry–Perot cavity. Opt. Commun. 437, 297–302 (2018)

    ADS  Google Scholar 

  19. H. Deng, C. Ji, X. Zhang, P. Chen, L. Wu, J. Jiang, H. Tian, Low threshold optical bistability in graphene/waveguide hybrid structure at terahertz frequencies. Opt. Commun. 499, 127282 (2021)

    Google Scholar 

  20. A. Liu, W. Fan, Y. Bao, L. Fan, G. Liu, Optical bistability and multistability in a graphene quantum system. Chin. J. Phys. 77, 2589–2602 (2022)

    MathSciNet  Google Scholar 

  21. K. Zhang, L. Guo, Optical bistability in graphene-wrapped dielectric nanowires. Opt. Express. 25, 13747–13759 (2017)

    ADS  Google Scholar 

  22. Q. Liu, J. Liu, D. Zhao, B. Wang, On-chip experiment for chiral mode transfer without enclosing an exceptional point. Phys. Rev. A. 103, 023531 (2021)

    ADS  Google Scholar 

  23. F. Liu, D. Zhao, H. Cao, S. Ke, Exceptional points in non-Hermitian photonic crystals incorporated with a defect. Appl. Sci. 10(3), 823 (2020)

    Google Scholar 

  24. S. Ke, D. Zhao, J. Fu, Q. Liao, B. Wang, P. Lu, Topological edge modes in non-Hermitian photonic Aharonov–Bohm cages. IEEE J. Sel. Top. Quantum Electron. 26(6), 4401008 (2020)

    Google Scholar 

  25. Z. Lin, L. Ding, S. Ke, X. Li, Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett. 46(15), 3512–3515 (2021)

    ADS  Google Scholar 

  26. L. Ding, Z. Lin, S. Ke, B. Wang, P. Lu, Non-Hermitian flat bands in rhombic microring resonator arrays. Opt. Express. 29(15), 24373–24386 (2021)

    ADS  Google Scholar 

  27. S. Xiang, Y. Wu, F. Wang, Z. Lin, Z. Hong, S. Ke, Constant intensity discrete diffraction in anti-PT-symmetric electric circuits. Results Phys. 27, 104491 (2021)

    Google Scholar 

  28. Z. Lin, S. Ke, X. Zhu, X. Li, Square-root non-Bloch topological insulators in non-Hermitian ring resonators. Opt. Express 29(3), 8462–8476 (2021)

    ADS  Google Scholar 

  29. J. Liu, J. Shen, D. Zhao, P. Zhang, Photonic passbands induced by optical fractal effect in Cantor dielectric multilayers. PLoS ONE 17(8), e0268908 (2022)

    Google Scholar 

  30. M. Wu, F. Liu, D. Zhao, Y. Wang, Unidirectional invisibility in PT-symmetric cantor photonic crystals. Curr. Comput.-Aided Drug Des. 12, 199 (2022)

    Google Scholar 

  31. H. Ni, J. Wang, A. Wu, Optical bistability in aperiodic multilayer composed of graphene and Thue–Morse lattices. Optik 242, 167163 (2021)

    ADS  Google Scholar 

  32. C. Wen, W. Liu, J. Wu, Tunable terahertz optical bistability and multistability in photonic metamaterial multilayers containing nonlinear dielectric slab and graphene sheet. Appl. Phys. A. 126, 426 (2020)

    ADS  Google Scholar 

  33. J. Wang, F. Xu, F. Liu, D. Zhao, Optical bistable and multistable phenomena in aperiodic multilayer structures with graphene. Opt. Mater. 119, 111395 (2021)

    Google Scholar 

  34. H. Zhang, S. Liu, X. Kong, B. Bian, X. Zhao, Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals. Prog. Electromagn. Res. B. 40, 415–431 (2012)

    Google Scholar 

  35. Y. Trabelsi, W. Belhadj, N.B. Ali, A.H. Aly, Theoretical study of tunable optical resonators in periodic and quasiperiodic one-dimensional photonic structures incorporating a nematic liquid crystal. Photonics 8, 150 (2021)

    Google Scholar 

  36. F.S. Chaves, H.A. Elsayed, Transmittance spectrum in a Rudin Shapiro quasiperiodic one-dimensional photonic crystal with superconducting layers. Phys. C. 587, 1353898 (2021)

    ADS  Google Scholar 

  37. Y. Trabelsi, Y. Bouazzi, N. Benali, M. Kanzari, Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals. Opt. Quantum. Electron. 48, 54 (2016)

    Google Scholar 

  38. S. Sahel, R. Amri, L. Bouaziz, D. Gamra, M. Lejeune, M. Benlahsen, K. Zellama, H. Bouchriha, Optical filters using Cantor quasi-periodic one-dimensional photonic crystal based on SiO2 and Si. Superlatt. Microstruct. 97, 429–438 (2016)

    ADS  Google Scholar 

  39. E.F. Silva, C.H. Costa, M.S. Vasconcelos, Transmission spectra in graphene-based Octonacci one-dimensional photonic quasicrystals. Opt. Mater. 89, 623–629 (2019)

    ADS  Google Scholar 

  40. A. Biswal, R. Kumar, C. Nayak, S. Dhanalakshmi, Photonic bandgap characteristics of GaAs/AlAs-based one-dimensional quasi-periodic photonic crystal. Optik 234, 166597 (2021)

    ADS  Google Scholar 

  41. E.R. Brandao, C.H. Costa, M.S. Vasconcelos, D. Anselmo, V.D. Mello, Octonacci photonic quasicrystals. Opt. Mater. 46, 378–383 (2015)

    ADS  Google Scholar 

  42. J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, P. Lu, Near-field characterization of graphene plasmons by photo-induced force microscopy. Laser Photon. Rev. 12(8), 1800040 (2018)

    ADS  Google Scholar 

  43. Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677 (2012)

    Google Scholar 

  44. Y. Xiang, J. Guo, X. Dai, S. Wen, D. Tang, Engineered surface bloch waves in graphene-based hyperbolic metamaterials. Opt. Express. 22, 3054–3062 (2014)

    ADS  Google Scholar 

Download references

Funding

Hubei Science and Technology Plan Project (2019BEC206), Xianning Natural Science Foundation Project (2020ZRKX10), the Scientific Research Project of Hubei University of Science and Technology (2022-23X08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, G., Zhang, C. et al. Dual optical bistabilities in Octonacci photonic multilayers doped by graphene. J Opt 52, 1436–1446 (2023). https://doi.org/10.1007/s12596-022-00975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00975-0

Keywords

Navigation