Skip to main content
Log in

Perceptron for channel estimation and signal detection in OFDM systems

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Chien, T., & Björnson, E. Massive MIMO communications. In: 5G Mobile communications (pp. 77–116). Springer, cham. (2017). https://doi.org/10.3390/s20102753

  2. H. Ye, G.Y. Li, B.H. Juang, Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wire Commun Lett 7(1), 114–117 (2017). https://doi.org/10.1109/LWC.2017.2757490

    Article  Google Scholar 

  3. Q. Hu, F. Gao, H. Zhang, S. Jin, G.Y. Li, Deep learning for channel estimation: Interpretation, performance, and comparison. IEEE Trans. Wire. Commun. 20(4), 2398–2412 (2020). https://doi.org/10.1109/TWC.2020.3042074

    Article  Google Scholar 

  4. X. Yi, C. Zhong, Deep learning for joint channel estimation and signal detection in OFDM systems. IEEE Commun. Lett. 24(12), 2780–2784 (2020). https://doi.org/10.1109/LCOMM.2020.3014382

    Article  Google Scholar 

  5. T. Van Chien, T.N. Canh, E. Björnson, E.G. Larsson, Power control in cellular massive MIMO with varying user activity: A deep learning solution. IEEE Trans. Wireless Commun. 19(9), 5732–5748 (2020). https://doi.org/10.1109/TWC.2020.2996368

    Article  Google Scholar 

  6. C.J. Chun, J.M. Kang, I.M. Kim, Deep learning-based channel estimation for massive MIMO systems. IEEE Wireless Commun. Lett. 8(4), 1228–1231 (2019). https://doi.org/10.1109/LWC.2019.2912378

    Article  Google Scholar 

  7. Le Ha, A., Van Chien, T., Nguyen, T. H., & Choi, W. Deep learning-aided 5G channel estimation. In 2021 15th international conference on ubiquitous information management and communication (IMCOM) (2021, Jan). (pp. 1–7). IEEE https://doi.org/10.1109/IMCOM51814.2021.9377351.

  8. Y. Yang, F. Gao, X. Ma, S. Zhang, Deep learning-based channel estimation for doubly selective fading channels. IEEE Access 7, 36579–36589 (2019). https://doi.org/10.1109/ACCESS.2019.2901066

    Article  Google Scholar 

  9. T. O’shea, J. Hoydis, An introduction to deep learning for the physical layer. IEEE Trans. Cognitive Commun. Net. 3(4), 563–575 (2017). https://doi.org/10.1109/TCCN.2017.2758370

    Article  Google Scholar 

  10. Y. Yang, F. Gao, G.Y. Li, M. Jian, Deep learning-based downlink channel prediction for FDD massive MIMO system. IEEE Commun. Lett. 23(11), 1994–1998 (2019). https://doi.org/10.1109/TCOMM.2020.3019077

    Article  Google Scholar 

  11. D. Neumann, T. Wiese, W. Utschick, Learning the MMSE channel estimator. IEEE Trans. Signal Process. 66(11), 2905–2917 (2018). https://doi.org/10.1109/TSP.2018.2799164

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Q. Yuan, D. Li, Z. Wang, C. Liu, C. He, Channel estimation and pilot design for uplink sparse code multiple access system based on complex-valued sparse autoencoder. IEEE Access. (2019). https://doi.org/10.1109/ACCESS.2019.2904990

    Article  Google Scholar 

  13. K. Koufos, K. Haloui, M. Dianati, M. Higgins, J. Elmirghani, M. Imran, R. Tafazolli, Trends in intelligent communication systems: review of standards, major research projects, and identification of research gaps. J. Sens. Actuator Netw. 10(4), 60 (2021). https://doi.org/10.3390/jsan10040060

    Article  Google Scholar 

  14. Mei, K., Liu, J., Zhang, X., & Wei, J. Machine learning based channel estimation: A computational approach for universal channel conditions. (2019). arXiv preprint arXiv:1911.03886https://doi.org/10.13140/RG.2.2.12584.11527.

  15. H. Huang, J. Yang, H. Huang, Y. Song, G. Gui, Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans. Veh. Technol. 67(9), 8549–8560 (2018). https://doi.org/10.1109/TVT.2018.2851783

    Article  Google Scholar 

  16. H. Ye, G.Y. Li, B.H. Juang, Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun. Lett. 7(1), 114–117 (2017). https://doi.org/10.1109/LWC.2017.2757490

    Article  Google Scholar 

  17. H. Ye, L. Liang, G.Y. Li, B.H. Juang, Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels. IEEE Trans. Wireless Commun. 19(5), 3133–3143 (2020). https://doi.org/10.1109/TWC.2020.2970707

    Article  Google Scholar 

  18. S. Dörner, S. Cammerer, J. Hoydis, S. Ten Brink, Deep learning based communication over the air. IEEE J. Selected Topics Signal Process. 12(1), 132–143 (2017). https://doi.org/10.1109/JSTSP.2017.2784180

    Article  ADS  Google Scholar 

  19. Ye, H., Li, G. Y., Juang, B. H. F., & Sivanesan, K. Channel agnostic end-to-end learning based communication systems with conditional GAN. In 2018 IEEE globecom workshops(2018, Dec). (GC Wkshps) (pp. 1–5). IEEE https://doi.org/10.1109/GLOCOMW.2018.8644250.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Rani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Singal, P. Perceptron for channel estimation and signal detection in OFDM systems. J Opt 52, 69–76 (2023). https://doi.org/10.1007/s12596-022-00924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00924-x

Keywords

Navigation