Skip to main content
Log in

Analysis of RWA in WDM optical networks using machine learning for traffic prediction and pattern extraction

  • Discussion
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Machine learning (ML) has attracted researchers to discover numeral solutions in the field associated with optical networking problems. In this paper, ML discipline procedures have been discussed to proficiently execute Routing and Wavelength Assignment (RWA) for contribution in traffic calculation in the Wavelength Division Multiplexing (WDM) optical set-up. The growing demand for data transport through WDM networks has created problems related to the search for routes and the assignment of wavelengths in these networks. In optical networks, RWA is a well-known problem. To address this problem, researchers have proposed simple to complex heuristic machine learning algorithms. This paper describes how machine learning support can be used and shared in optical networks and the assessment of transmission quality (QoT), data traffic patterns, and crosstalk detection to help route and distribute resources. The RWA algorithm assessments rely on performance measures such as the blocking probability, network utilization, etc. The paper summarizes future research trends for the use of routing and distribution of resources in machine learning processes in optical networks with the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Zhu, S. Member, H. Zang, B. Mukherjee, A comprehensive study on next-generation optical. Networks 21(7), 1173–1186 (2003)

    Google Scholar 

  2. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009). https://doi.org/10.1109/MCOM.2009.5307468

    Article  Google Scholar 

  3. M. Jinno et al., Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network. IEEE Commun. Mag. 48(8), 138–145 (2010). https://doi.org/10.1109/MCOM.2010.5534599

    Article  Google Scholar 

  4. S.J. Yoo, A. Lord, M. Jinno, O. Gerstel, Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), s12–s20 (2012)

    Article  Google Scholar 

  5. K. Christodoulopoulos, E. Varvarigos, I. Tomkos, Corrections to ‘elastic bandwidth allocation in flexible OFDM-based optical networks.’ J. Light. Technol. 29(12), 1899 (2011). https://doi.org/10.1109/JLT.2011.2155990

    Article  ADS  Google Scholar 

  6. G. Zhang, M. De Leenheer, A. Morea, B. Mukherjee, A survey on OFDM-based elastic core optical networking index terms—optical orthogonal frequency-division multiplexing (O-OFDM), elastic optical network, data rate/bandwidth-variable transponder, bandwidth-variable wavelength cross-connect (BV-WXC), Routin. Ieee Commun. Surv. Tutorials 15(1), 65–87 (2013)

    Article  Google Scholar 

  7. Y. Xiong, Y. Yang, Y. Ye, G.N. Rouskas, A machine learning approach to mitigating fragmentation and crosstalk in space division multiplexing elastic optical networks. Opt. Fiber Technol. 50, 99–107 (2019). https://doi.org/10.1016/j.yofte.2019.03.001

    Article  ADS  Google Scholar 

  8. G.M. Saridis, D. Alexandropoulos, G. Zervas, D. Simeonidou, Survey and evaluation of space division multiplexing: From technologies to optical networks. IEEE Commun. Surv. Tutorials 17(4), 2136–2156 (2015). https://doi.org/10.1109/COMST.2015.2466458

    Article  Google Scholar 

  9. Y. Lei, Q. Chen, Y. Jiang, Q. Zhang, B. Chen, “Crosstalk-Aware Routing, Core, and Spectrum Assignment with Core Switching in SDM-EONs,” 2019 18th Int. Conf. Opt. Commun. Networks, ICOCN 2019, pp. 1–3, 2019, doi: https://doi.org/10.1109/ICOCN.2019.8934370

  10. H. Liu, L. Sang, Y. Chen, M. Xiang, Y. Ma, Space-frequency joint contention scheduling algorithm based on AoD in SDM-EONs. Opt. Fiber Technol. 47(2018), 93–101 (2019). https://doi.org/10.1016/j.yofte.2018.11.005

    Article  ADS  Google Scholar 

  11. A.E. Ozdaglar, D.P. Bertsekas, Routing and wavelength assignment in optical networks. IEEE/ACM Trans. Netw. 11(2), 259–272 (2003). https://doi.org/10.1109/TNET.2003.810321

    Article  Google Scholar 

  12. O. Gerstel, S. Kutten, Dynamic wavelength allocation in all-optical ring networks. IEEE Int. Conf. Commun. 1, 432–436 (1997). https://doi.org/10.1109/icc.1997.605331

    Article  Google Scholar 

  13. D. Banerjee, B. Mukherjee, A practical approach for routing and wavelength assignment in large wavelength-routed optical networks. IEEE J. Sel. Areas Commun. 14(5), 903–908 (1996). https://doi.org/10.1109/49.510913

    Article  Google Scholar 

  14. R. Ramaswami, K.N. Sivarajan, Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995). https://doi.org/10.1109/90.469957

    Article  Google Scholar 

  15. A. Birman, “for a Class of All-Optical Networks,” 14(5), 852–857, 1996

  16. A. Mokhtar, M. Azizoglu, Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. Netw. 6(2), 197–206 (1998). https://doi.org/10.1109/90.664268

    Article  Google Scholar 

  17. L. Li, A.K. Somani, Dynamic wavelength routing using congestion and neighborhood information. IEEE/ACM Trans. Netw. 7(5), 779–786 (1999). https://doi.org/10.1109/90.803390

    Article  Google Scholar 

  18. B.M.H. Zang, P.J. Jason, A review of routing and wavelength assignment approaches for wavelength routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000)

    Google Scholar 

  19. “Optical Network Design and Planning,” Opt. Netw. Des. Plan., 2008, doi: https://doi.org/10.1007/978-0-387-76476-4

  20. J. Samar, P. Singh, Y. K. Jain, “Analysis of Dynamic Traffic Patterns on WDM Optical Networks for Different Topologies Using RWA Algorithm,” 4(12), 182–186, 2015, doi: https://doi.org/10.17148/IJARCCE.2015.41241

  21. I. Martin, J.A. Hernandez, S. Troia, F. Musumeci, G. Maier, O.G. De Dios, Is machine learning suitable for solving RWA problems in optical networks? Eur. Conf. Opt. Commun. ECOC 2018(1), 4–6 (2018). https://doi.org/10.1109/ECOC.2018.8535562

    Article  Google Scholar 

  22. Y. Zhang, J. Xin, X. Li, S. Huang, Overview on routing and resource allocation based machine learning in optical networks. Opt. Fiber Technol. 60, 102355 (2020). https://doi.org/10.1016/j.yofte.2020.102355

    Article  Google Scholar 

  23. F. Musumeci et al., An overview on application of machine learning techniques in optical networks. ArXiv 21(2), 1383–1408 (2018)

    Google Scholar 

  24. I. Pauletic, L. N. Prskalo, M. B. Bakaric, “An overview of clustering models with an application to document clustering,” 2019 42nd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2019 - Proc., pp. 1659–1664, 2019, doi: https://doi.org/10.23919/MIPRO.2019.8756868

  25. I. Koyanagi, T. Tachibana, K. Sugimoto, A reinforcement learning-based lightpath establishment for service differentiation in all-optical WDM networks. GLOBECOM IEEE Glob. Telecommun. Conf. (2009). https://doi.org/10.1109/GLOCOM.2009.5425662

    Article  Google Scholar 

  26. S. Çalı, M. K. Pehlivano, “Model Tabanlı Olmayan Peki ¸ stirmeli Ö ˘ grenme Algoritmaları Üzerine ˙ Inceleme Model-Free Reinforcement Learning Algorithms: A Survey,” pp. 10–13

  27. C. L. Chang, S. J. Kang, “Using reinforcement learning to the priority-based routing and call admission control in WDM networks,” Proc. - 5th Int. Multi-Conference Comput. Glob. Inf. Technol. ICCGI 2010, pp. 126–130, 2010, doi: https://doi.org/10.1109/ICCGI.2010.22

  28. Y. Pointuricr, F. Hcidari, “Reinforcement learning based routing in all-optical networks,” Proc. 4th Int. Conf. Broadband Commun. Networks, Syst. BroadNets, pp. 919–921, 2007, doi: https://doi.org/10.1109/BROADNETS.2007.4550533

  29. I. Martín et al., Machine learning-based routing and wavelength assignment in software-defined optical networks. IEEE Trans. Netw. Serv. Manag. 16(3), 871–883 (2019)

    Article  Google Scholar 

  30. C. L. Gutterman, W. Mo, S. Zhu, Y. Li, D. C. Kilper, G. Zussman, “Neural network based wavelength assignment in optical switching,” Big-DAMA 2017 - Proc. 2017 Work. Big Data Anal. Mach. Learn. Data Commun. Networks, Part SIGCOMM 2017, pp. 37–42, 2017, doi: https://doi.org/10.1145/3098593.3098600

  31. J. Yu et al., “A Deep Learning Based RSA Strategy for Elastic Optical Networks,” 2019 18th Int. Conf. Opt. Commun. Networks, ICOCN 2019, pp. 2019–2021, 2019, doi: https://doi.org/10.1109/ICOCN.2019.8934862

  32. X. Chen, R. Proietti, M. Shamsabardeh, G. Liu, K. Zhang, S.J.B. Yoo, “Knowledge-based service provisioning in multi-domain elastic optical networks”, 31st Annu. Conf. IEEE Photonics Soc. IPC 2018(August), 152–158 (2018). https://doi.org/10.1109/IPCon.2018.8527334

    Article  Google Scholar 

  33. A. Sano et al., 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt. Express 21(14), 16777 (2013). https://doi.org/10.1364/oe.21.016777

    Article  ADS  Google Scholar 

  34. A.B. Rodríguez Garcia, L.J. Ramirez Lopez, J.C. Espinoza Oyarzún, RWA: optical networks with heuristics algorithms. Dyna 83(199), 165 (2016). https://doi.org/10.15446/dyna.v83n199.53832

    Article  Google Scholar 

  35. L. D. M. Guimarães, A. R. De Oliveira, M. F. Caetano, J. L. Bordim, “A RWA algorithm based on a new performance evaluation metric for WDM networks,” Proc. - 2011 2nd Int. Conf. Netw. Comput. ICNC 2011, pp. 120–126, 2011, doi: https://doi.org/10.1109/ICNC.2011.25

  36. D. Batham, S. Kumar Pathak, D. Singh Yadav, S. Prakash, A traffic scheduling strategy based on cost function for differentiated class of service in multi-domain optical networks. Opt. Fiber Technol. 60, 102337 (2020). https://doi.org/10.1016/j.yofte.2020.102337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saloni Rai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Garg, A.K. Analysis of RWA in WDM optical networks using machine learning for traffic prediction and pattern extraction. J Opt 52, 900–907 (2023). https://doi.org/10.1007/s12596-021-00735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00735-6

Keywords

Navigation