Skip to main content
Log in

Performance analysis of an ultra- compact power splitter based on 2D photonic crystal in the near IR range for photonic integrated circuits

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present era due to miniaturization and integration of optoelectronic devices, it becomes important to design ultra-compact optical devices suitable for photonic integrated circuits (PICs). In this paper, new structure of a 2D photonic crystal-based Y-junction power splitter for TE polarization is proposed (wavelength of 1430 nm and size 10 × 10 µm2). Air holes are etched in the silicon substrate to form a hexagonal lattice structure for the Y- junction splitter. The optimization of the splitter is done by structural tuning at the bends and junction region. The structure is simulated by finite difference time domain (FDTD) and plane wave expansion (PWE) methods, which gives the normalized distribution of power and range of photonic bandgap (PBG), respectively. The simulated results confirm that a high transmission efficiency of 97.29% is achieved for night vision applications in the mid IR range. Moreover, the ultra-compact splitter is highly suitable for photonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, On-chip natural assembly of silicon photonic bandgap crystals. Nature (2001). https://doi.org/10.1038/35104529

    Article  Google Scholar 

  2. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. (1987). https://doi.org/10.1103/PhysRevLett.58.2059

    Article  Google Scholar 

  3. Y. Rahmat-Samii, “Electromagnetic band-gap structures: classification, characterization and applications,” (2005) doi: https://doi.org/10.1049/cp:20010350.

  4. C. Gong, X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices. Sci (2019). https://doi.org/10.1126/science.aav4450

    Article  Google Scholar 

  5. M. Bayindir et al., “Guiding, bending and splitting of electromagnetic waves in highly confined photonic crystal waveguides.” Phys. Rev. B - Condens. Matter Mater. Phys. (2001). doi: https://doi.org/10.1103/PhysRevB.63.081107.

  6. Y. Zhao, “Ultracompact and large-scale power splitters on silicon-based two-dimensional photonic crystals at near-infrared wavelengths.” 45, 4–8 (2015). doi: https://doi.org/10.1117/1.2166850.

  7. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap.” Phys. Rev. B - Condens. Matter Mater. Phys. (2000) doi: https://doi.org/10.1103/PhysRevB.62.10696.

  8. X. Zhao, Y. Li, S. Feng, X. Chen, C. Li, Y. Wang, Beam splitting characteristics of two-dimensional photonic crystals based on surface modulation. Opt. Commun. (2019). https://doi.org/10.1016/j.optcom.2019.01.021

    Article  Google Scholar 

  9. T. Sridarshini, I.wG.S. and M. Rakshitha, “Design and analysis of 1xN symmetrical optical splitters for photonic integrated circuits.” Optik (Stuttg). 169, 321–331 (2018) doi: https://doi.org/10.1016/j.ijleo.2018.05.053.

  10. M. Danaie, R. Nasiri-far and A. Dideban, “Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes.” 12, (2018).

  11. H. Razmi, M. Soroosh, Y.S. Kavian, A new proposal for ultra-compact polarization independent power splitter based on photonic crystal structures. J. Opt. Commun. 39(4), 375–379 (2018). https://doi.org/10.1515/joc-2017-0021

    Article  Google Scholar 

  12. M. Danaie, R. Nasirifar, A. Dideban, Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations. Turkish J. Electr. Eng. Comput. Sci. 25(5), 4398–4408 (2017). https://doi.org/10.3906/elk-1702-334

    Article  Google Scholar 

  13. S. Singh, K. Singh, Design of an integrated multi-arm power splitter using photonic crystal waveguide. Optik (Stuttg) 145, 495–502 (2017). https://doi.org/10.1016/j.ijleo.2017.08.021

    Article  ADS  Google Scholar 

  14. V. Fallahi and M. Seifouri, “Novel four-channel all optical demultiplexer based on square PhCRR for using WDM applications.” 3, (2018).

  15. R.W. Purnamaningsih, N.R. Poespawati and E. Dogheche, “Design of a four-branch optical power splitter based on gallium-nitride using rectangular waveguide coupling for telecommunication links.” J. Eng. (United States). 2019, (2019) doi: https://doi.org/10.1155/2019/7285305.

  16. F. Sohrabi, T. Mahinroosta, S.M. Hamidi, Design of 1 × 3 power splitter based on photonic crystal ring resonator. Opt. Eng. (2014). https://doi.org/10.1117/1.oe.53.11.115104

    Article  Google Scholar 

  17. R. Arunkumar, J.K. Jayabarathan, S. Robinson, Design and analysis of optical Y-splitters based on two-dimensional photonic crystal ring resonator. J. Optoelectron. Adv. Mater. 21(7–8), 435–442 (2019)

    Google Scholar 

  18. N. Vico Triviño, U. Dharanipathy, J.F. Carlin, Z. Diao, R. Houdré and N. Grandjean, “Integrated photonics on silicon with wide bandgap GaN semiconductor.” Appl. Phys. Lett. (2013) doi: https://doi.org/10.1063/1.4793759.

  19. H. Satoh, N. Yoshida, Y. Miyanaga, Analysis of TM wave properties through sharp bend in 2-D air-hole type photonic crystal waveguide on uni-axial anisotropic substrate by condensed node spatial network. IEEJ Trans. Fundam. Mater. (2003). https://doi.org/10.1541/ieejfms.123.220

    Article  Google Scholar 

  20. M. Radhouene, M. Najjar, M. Chhipa, S. Robinson, B. Suthar, Performance optimization of six channels WDM demultiplexer based on photonic crystal structure. J. Ovonic Res. 13(5), 291–297 (2017)

    Google Scholar 

  21. T.B. Saral, S. Robinson and R. Arunkumar, “Two-dimensional photonic crystal based compact power splitters,” 2, 1–5 (2016).

  22. N. Mesri, H. Alipour-Banaei, An optical power divider based on two-dimensional photonic crystal structure. J. Opt. Commun. 38(2), 129–132 (2017). https://doi.org/10.1515/joc-2016-0069

    Article  Google Scholar 

  23. D. Yang, H. Tian and Y. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” 285, 3752–3757 (2012) doi: https://doi.org/10.1016/j.optcom.2012.05.022.

  24. M.S. Ünlü, S. Strite, Resonant cavity enhanced photonic devices. J. Appl. Phys. (1995). https://doi.org/10.1063/1.360322

    Article  Google Scholar 

  25. I. Andonegui, I. Calvo, A.J. Garcia-Adeva, Inverse design and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits. Appl. Phys. A Mater. Sci. Process. (2014). https://doi.org/10.1007/s00339-013-8032-5

    Article  Google Scholar 

  26. P. Jindal and H.J. Kaur, “Analysis of the photonic crystal power splitter based on the junction defect radius for optimum resonance,” Optoelectron. Instrum. Data Process. 54, (2018) doi: https://doi.org/10.3103/S8756699018060067.

  27. F. Amal, A.B. Hadjira, A. Mehadji, Ultra-highly efficient 1 × 3 and 1 × 6 splitters for terahertz communication applications. IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016). https://doi.org/10.1109/LPT.2016.2554103

    Article  ADS  Google Scholar 

  28. M. Rahman and S.M. Ullah, “Design of a low-loss Y-splitter for optical telecommunication using a 2D photonics crystal,” 60, 34–39 (2012).

  29. P. Zhang, H. Guo, H. Chen, C. Wang, X. Zhang, Novel composite beam splitter with directional coupler and Y-junction using photonic crystal. Optik (Stuttg) 124(18), 3384–3386 (2013). https://doi.org/10.1016/j.ijleo.2012.10.018

    Article  ADS  Google Scholar 

  30. D.C. Tee, N. Tamchek, Y.G. Shee, F.R.M. Adikan, Numerical investigation on cascaded 1 × 3 photonic crystal power splitter based on asymmetric and symmetric 1 × 2 photonic crystal splitters designed with flexible structural defects. Opt. Express 22(20), 24241 (2014). https://doi.org/10.1364/oe.22.024241

    Article  ADS  Google Scholar 

  31. H. Guo, Q. Liao, Large separating angle multiway beam splitter based on photonic crystal ring resonators. Opt. InfoBase Conf. Pap. 7631, 1–6 (2009). https://doi.org/10.1117/12.851552

    Article  Google Scholar 

  32. A. Moungar, H. Badaoui and M. Abri, “16-Channels wavelength efficient demultiplexing around 1.31/1.55 μm in 2D photonic crystal slab,” Optik (Stuttg). 193, (2019) doi: https://doi.org/10.1016/j.ijleo.2019.04.032.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Jindal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, P., Kaur, H.j. Performance analysis of an ultra- compact power splitter based on 2D photonic crystal in the near IR range for photonic integrated circuits. J Opt 50, 395–402 (2021). https://doi.org/10.1007/s12596-021-00725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00725-8

Keywords

Navigation