Skip to main content
Log in

Noise reduction in optical gyroscope signals based on hybrid approaches

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Gyroscopes are sensors that are used for motion measurement. They are generally used to measure rotation rate of moving equipment. There are different types of gyroscopes including mechanical, micro-electromechanical and optical gyroscopes. Gyroscope signal suffers from internal noise due to internal device operation and external noise of the environment. This paper presents a proposed hybrid technique that includes both Kalman filtering and wavelet denoising for noise reduction of gyroscope signals. Results show the superiority of this proposed technique to other traditional ones. Arranging the stages in a cascaded hybrid structure has an effect on the performance of the hybrid technique. The utilization of the Kalman filter as the first stage is better than the utilization of the wavelet denoising as the first stage. For the comparison, two evaluation metrics are used: signal-to-noise ratio (SNR) improvement and correlation coefficient with the clean signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Chen X. (2005) Adaptive Filtering Based on the Wavelet Transform for FOG on the Moving Base. In: Huang, D.S., Zhang, X.P., Huang, G.B. (eds.) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol. 3644. pp. 447–455, Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_47

  2. R. Bergh, H. Lefevre, H. Shaw, An overview of fiber-optic gyroscopes. Lightwave Technol. LT2, 22–24 (1984)

    Google Scholar 

  3. H.C. Lefèvre, Z. Guicai, W. Wei, Optic fiber gyroscope (National Defense Industry Press, Beijing, 2004)

    Google Scholar 

  4. H.C. Lefevre, The fiber-optic gyroscope (Artech House, Norwood, 2014)

    Google Scholar 

  5. C.H. Hua, R. Zhang, M.H. Zhang, Filtering of long-term dependent fractal noise in fiber optic gyroscope. J. Syst. Eng. Electr. 21, 1041–1045 (2010)

    Article  Google Scholar 

  6. N.F. Song, C.X. Zhang, X.Z. Du, Analysis of vibration error in fiber optic gyroscope, in Conference on Advanced Sensor Systems and Applications, SPIE Proceedings Shang Hai China 4920 (2002), pp. 115–121

  7. S.M. Bielas, Stochastic and dynamic modeling of fiber gyros. SPIE Fiber Optic. Laser Sens. 12, 240–254 (1994)

    Article  ADS  Google Scholar 

  8. H. Good Wall, Chiang, N. El-Sheimy, Positional accuracy enhancement of an INS/GPS integrated system. Coord. Mag. 2, 10–16 (2001)

    Google Scholar 

  9. A.R. Stubberud, X.H. Yu, Signal processing for micro-inertial sensors, in RTO Meeting Proceedings 44, Advances in Vehicle Systems Concepts and Integration, Neuilly-Sur-Seine, France (2000)

  10. D.S. Bayard, S.R. Ploen, High accuracy inertial sensors from inexpensive components. US patent 0187623 (2003)

  11. C. Shufen, Z. Yong, Q. Bingkun et al., Theoretical analysis of noise on IFOG with integrated optics chip. Opt. Tech. 29(3), 8–10 (2003)

    Google Scholar 

  12. H. Zhangyong, Photoelectronic device and component using in optical fibre communication (Beijing University Posts and Telecommunications Press, Beijing, 2001)

    Google Scholar 

  13. N. El-Sheimy, S. Naser, A. Noureldin, Wavelet based de-noising for IMU alignment. IEEE Aerosp. Electron. Syst. Mag. 19, 32–39 (2004)

    Article  Google Scholar 

  14. F. Liu, F. Liu, W. Wang, B. Xu, MEMS Gyro’s output signal denoising based on wavelet analysis, in Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China (2007), pp. 5–8

  15. D. Donoho, Denoising by soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  Google Scholar 

  16. LAWRENCE, The Principles of Mechanical Gyroscopes (1998)

  17. University of Victoria, Microelectromechanical Systems. (2015). http://www.engr.uvic.ca/_mech466/MECH466-Lecture-1.pdf. Last accessed 11 Jan 2016

  18. C. Kim, W.T. Sung, S. Sung, S. Yun, Y.J. Lee, On the mode-matched control of MEMS vibratory gyroscope via phase-domain analysis and design. IEEE/ASME Trans. Mechatron. 14(4), 446–455 (2009)

    Article  Google Scholar 

  19. Z. Guo, Z. Yang, L. Lin, Q. Zhao, J. Cui, X. Chi, G. Yan, Decoupled comb capacitors for microelectromechanical tuning-fork gyroscopes. IEEE Electron Device Lett. 31(1), 26–28 (2010)

    Article  ADS  Google Scholar 

  20. S.W. Yoon, Vibration-induced errors in MEMS tuning fork gyroscopes. Sens. Actuators, A 180, 32–44 (2012)

    Article  Google Scholar 

  21. G. Sagnac, L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci. 95, 708–710 (1913)

    Google Scholar 

  22. E.J. Post, Sagnac effect. Rev. Mod. Phys. 39, 475–494 (1967)

    Article  ADS  Google Scholar 

  23. A. Lawrence, Modern Inertial Technology, 2nd edn. (Springer, New York, 1998)

    Book  Google Scholar 

  24. L. Wang, Y. Hao, F. Wang, Calibration of low cost MEMS inertial measurement unit for an FPGA-based navigation system, in IEEE International Conference on Information and Automation (2011), pp. 181–186

  25. C. Saraporn, T. Dolwichai, J. Srisertpol, K. Teeka, Signal conditioning of low-cost gyroscope using Kalman filter and nonlinear least square method, in Advanced Materials Research. Trans Tech Publ (2013)

  26. H. Qian, Q. Xia, et al., On modeling of random drift of MEMS gyroscope and design of Kalman filter, in International Conference on Mechatronics and Automation (ICMA) (2009), pp. 4355–4360

  27. I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics. ISBN 0-89871-274-2 (1992)

  28. http://www.ece.northwestern.edu/localapps/matlabhelp/toolbox/wavelet/ch06_a44.html

  29. Y.N. Korkishko, V. Fedorov, V. Prilutskii, V. Ponomarev, V. Marchuk, I. Morev, E. Paderin, S. Kostritskii, V. Branets, V. Ryzhkov, Fiber optical gyroscope for space applications, in Optical Fiber Sensors. Optical Society of America (2006)

  30. S.L. Sabat, P. Rangababu, K. Karthik, G. Krishhnaprasad, J. Nayak, System on chip implementation of 1-D wavelet transform based denoising of fiber optic gyroscope signal on FPGA, in Annual IEEE India Conference (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham M. Abdelzaher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelzaher, H.M., El-Dokany, I.M., El-Dolil, S.A. et al. Noise reduction in optical gyroscope signals based on hybrid approaches. J Opt 51, 5–21 (2022). https://doi.org/10.1007/s12596-020-00617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00617-3

Keywords

Navigation