Skip to main content
Log in

Performance analysis of PIN photodiode under gamma radiation effects through modeling

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The main objective of this paper is to evaluate the p-i-n photodiode as a radiation detector for gamma ray spectroscopy. Therefore, the effect of incident gamma radiation on p-i-n photodiode performance characteristics is evaluated. The p-i-n photodiode is interesting from the point of view because it has numerous advantages over conventional semiconductor junction in terms of better long wavelength response, radiation hardness, high quantum efficiency, long lifetime and lower cost. Therefore, it is important to analyze and evaluate their characteristics. Models for this interesting type of detector were developed. These models describe a nontrivial evaluation of the most important characteristics. The minority carrier of the holes of the developed model is obtained by self-consistently solving the one-dimension diffusion equation. On other hand, it is used to calculate the diffusion length, diffusion current, drift current, total current, quantum efficiency and signals-to-noise ratio (SNR) as a function of the structural parameters. These parameters are the radiation fluence, photodiode area, bias voltage, spectral wavelength and the operating temperature. Also, optimization of various characteristics of p-i-n photodiode is of primary concern. A comparison between the results obtained by proposed models and that published are conducted and full agreement is observed. Therefore, it confirms our models and their validity on practical applications. The main strength of p-i-n photodiodes is that the gap between induced diffusion current and drift current is large. Moreover, the p-i-n photodiode has a comparable value of SNR accomplished with low values of corresponding bias voltage. The obtained results assure that p-i-n can be used as an efficient radiation detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M. Balcerzyk, W. Klamra, M. Moszynski, M. Kapusta, M. Szawlowski, Energy resolution and light yield non-proportionality of ZnSe :Te scintillator studied by large area avalanche photodiodes and photomultipliers. Nucl. Inst. Methods Phys. Res. A 482, 720–727 (2002)

    Article  ADS  Google Scholar 

  2. S. Luryi, A. Kastalsky, M. Gouzman, N. Lifshitz, O. Semyonov, M. Stanacevic, A. Subashiev, V. Kuzminsky, W. Cheng, V. Smagin, Z. Chen, J.H. Abeles, W.K. Chan, Z.A. Shellenbarger, Epitaxial InGaAsP/InP photodiode for registration of InP scintillation. Nucl. Inst. Methods Phys. Res. A 622, 113–119 (2010)

    Article  ADS  Google Scholar 

  3. J.J. Wiczer, L.R. Dawson, Permanent damage effects in Si and AlGaAs/GaAs photodiodes. IEEE Trans. Nucl. Sci. NS-29(6) (1982)

  4. L.A.P. Santos, H.J. Khoury, C.J.G.C. Silva, The use of a photodiode for measuring soil-water content by γ-ray attenuation. Appl. Radiat. Isot. 47(5/6), 587–590 (1996)

    Article  Google Scholar 

  5. F.J. Ramırez-Jimenez, E.F. Aguilera, R. Lopez-Callejas, J.S. Benıtez-Read, J. Pacheco-Sotelo, A novel application of a PIN diode-preamplifier set for the measurement of charged particles. Nucl. Inst. Methods Phys. Res. A 545, 721–726 (2005)

    Article  ADS  Google Scholar 

  6. R. Starr, P.E. Clark, L.G. Evans, S.R. Floyd, T.P. McClanahan, J.I. Trombka, J.O. Goldsten, R.H. Maurer, R.L. McNutt, D.R. Roth, Radiation effects in the Si-PIN detector on the near earth asteroid rendezvous mission. Nucl. Inst. Methods Phys. Res. A 428, 209–215 (1999)

    Article  ADS  Google Scholar 

  7. J. Chavanelle, M. Parmentier, A CsI(Tl)-PIN photodiode gamma-ray probe. Nucl. Inst. Methods Phys. Res. A 504, 321–324 (2003)

    Article  ADS  Google Scholar 

  8. J. Chavanelle, A. Pousse, M. Parmentier, B. Kastler, Crystal optimization for a CsI(Tl)-PIN photodiode γ-ray probe by Monte Carlo method. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 708–712 (2003)

    Google Scholar 

  9. A.C. Chang, W.D. Hill, An area radiation monitoring system for nuclear plants using PIN photodiodes”. IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec. San Franc. CA 2, 923–925 (1995)

    Google Scholar 

  10. H.S. Kim, M. Jeong, Y. SooKim, D.H. Lee, S.Y. Cho, J.H. Ha, Characteristics of fabricated Si PIN-type radiation detectors on cooling temperature. Nucl. Instrum. Methods Phys. Res. A 784, 131–134 (2015)

    Article  ADS  Google Scholar 

  11. M.A. Mikhailov, L. Panteleev, Noise contributions to energy resolution in CsI(Tl) scintillation detector with PIN photodiode readout. Nucl. Inst. Methods Phys. Res. A 463, 288–292 (2001)

    Article  ADS  Google Scholar 

  12. H. Ohyama, E. Simoen, C. Claeys, Y. Takami, T. Kudou, H. Sunaga, Radiation Source Dependence of Degradation and Recovery of Irradiated In 0.53 Gag 0.47 As PIN Photodiodes. Fourth European Conference on Radiation and its Effects on Components and Systems (RADECS-97) (1997), pp. 108–113

  13. I.I. Mahmoud, M.S. El_Tokhy, H. A Konber, Model development of quantum dot devices for γ-radiation detection using block diagram programming. J. Nanotechnol. Eng. Med. Tech.Brief 2(3), 1–5 (2012)

  14. S. Onoda, T. Hirao, J.S. Laird, H. Mori, T. Okamoto, Y. Koizumi, H. Itoh, Spectral Response of Gamma and Electron Irradiated PIN Photodiode. 6th European Conference on Radiation and its Effects on Components and Systems (2001), pp. 450–454

  15. S. Onoda, T. Hirao, J.S. Laird, H. Mori, T. Okamoto, Y. Koizumi, H. Itoh, Spectral response of gamma and electron irradiated PIN photodiode. IEEE Trans. Nucl. Sci. 49(3), 1446–1449 (2002)

    Article  ADS  Google Scholar 

  16. S.-W. Park, S. Yuk, J.-B. Park, Y. Yi, A design for a linear array PIN photodiode for use in a Computed mammo-Tomography (CMT) system. Nucl. Inst. Methods Phys. Res. A 610, 210–214 (2009)

    Article  ADS  Google Scholar 

  17. E. Gramsch, K.G. Lynn, M. Weber, Silicon PIN photodetectors in high resolution nuclear spectroscopy. Nucl. Inst. Methods Phys. Res. A 311, 529–553 (1992)

    Article  ADS  Google Scholar 

  18. F. Regoa, L. Peralta, Si-PIN photodiode readout for a scintillating optical fiber dosimeter. Radiat. Meas. 47, 947–950 (2012)

    Article  Google Scholar 

  19. G. Hiller, Designs with PIN Diodes. (Alpha Industries company Inc., 2013)

  20. B.M. Onat, X. Jiang, M. Itzler, A Systematic Approach to Dark Current Reduction in InGaAs-Based Photodiode Arrays for Shortwave Infrared Imaging. IEEE LEOS Annual Meeting Conference Proceedings, (LEOS-09) (2009), pp. 231–232

  21. J.P. Colinge, C.A. Colinge, Physics of Semiconductor Devices. (Kluwer Academic Publishers, 2002)

  22. M.S. Andjelkovi, G.S. Risti, Current mode response of phototransistors to gamma radiation”. Radiat. Meas. 75, 29–39 (2015)

    Article  Google Scholar 

  23. A.P. Ce dola, M.A. Cappelletti, G. Casas, E.L. Peltzery Blanca, An iterative method applied to optimize the design of PIN photodiodes for enhanced radiation tolerance and maximum light response. Nucl. Instrum. Methods Phys. Res. A 629, 392–395 (2011)

    Article  ADS  Google Scholar 

  24. S. Onoda, T. Hirao, J.S. Laird, H. Mori, H. Itoh, T. Wakasa, T. Okamoto, Y. Koizumi, Displacement damage degradation of ion-induced charge in Si PIN photodiode. Nucl. Inst. Methods Phys. Res. B 206, 444–447 (2003)

    Article  ADS  Google Scholar 

  25. A.A. Mohamed, N.A. Ayad, A.N.Z. Rashed, H.M. El-Hageen, Speed response and performance degradation of high temperature gamma irradiated silicon PIN photodiodes. Int. J. Comput. Sci. Telecommun. 2(1) (2011)

  26. C. Cervera, K. Jaworowicz, H. Ait-Kaci, R. Chaghi, J.B. Rodriguez, I. Ribet-Mohamed, P. Christol, Temperature dependence performances of InAs/GaSb superlattice photodiode. Infrared Phys. Technol. 54, 258–262 (2011)

    Article  ADS  Google Scholar 

  27. Y. Majima, Drift Current and Diffusion Current. (Sunchon National University, 2012)

  28. G. Farrell, Background information on PIN and APD photodiode characteristics. Opt. Commun. Syst. Lab. (2002)

  29. M.S. Anuara, S.A. AlJunid, A.R. Arief, M.N. Junita, N.M. Saad, PIN versus Avalanche photodiode gain optimization in zero cross correlation optical code division multiple access system. Optik 124, 371–375 (2013)

    Article  ADS  Google Scholar 

  30. X. Fu, S. Yao, J. Yao Lu, Y. Zheng, Study on high signal-to-noise ratio (SNR) silicon p-n junction photodetector. Opt. Appl. XXXVI(2–3) (2006)

  31. M.S. El-Tokhy, I.I. Mahmoud, H.A. Konber, Performance improvement of quantum well infrared photodetectors through modeling. J. Nanophotonics 4, 043518 (2010)

    Article  ADS  Google Scholar 

  32. M.S. El Tokhy, I.I. Mahmoud, H.A. Konber, Block diagram modeling of quantum dot infrared photodetectors. Opt. Eng. 50(9), 094004-1–094004-6 (2011)

    Article  ADS  Google Scholar 

  33. Characteristics and use of photodiodes, United Detector Technology Inc., 2013.

  34. A.E.-N.A. Mohamed, M.M.E. El-Halawany, A.N.Z. Rashed, H.M. El-Hageen, Harmful proton radiation damage and induced bit error effects on the performance of avalanche photodiode devices. Int. J. Multidiscip. Sci. Eng. 2(4) (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. El_Tokhy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El_Tokhy, M.S., Mahmoud, I.I. Performance analysis of PIN photodiode under gamma radiation effects through modeling. J Opt 44, 353–365 (2015). https://doi.org/10.1007/s12596-015-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-015-0310-5

Keywords

Navigation