Skip to main content
Log in

Mode of Association, Enzyme Producing Ability and Identification of Autochthonous Bacteria in the Gastrointestinal Tract of Two Indian Air-Breathing Fish, Murrel (Channa punctatus) and Stinging Catfish (Heteropneustes fossilis)

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

The mode of association of epithelium-associated bacteria in the gastrointestinal (GI) tract of two Indian air-breathing fish species, the murrel, Channa punctatus and the stinging catfish, Heteropneustes fossilis was demonstrated through scanning and transmission electron microscopy (SEM and TEM). The SEM examination revealed substantial numbers of rod shaped bacterial cells associated with the microvillus brush borders of enterocytes in proximal (PI) and distal regions (DI) of the GI tract of both the fish species. The TEM investigation indicated endocytosis and translocation of bacteria in the microvilli. The isolated bacterial strains (two each from the PI and DI of murrel and stinging catfish) were quantitatively evaluated for their extracellular amylase, cellulase and protease production. All the bacterial strains exhibited high cellulolytic activity than that of amylolytic and proteolytic enzymes. Only two strains, CPF1 and CPF2, isolated from the PI of murrel exhibited high proteolytic activity. Maximum amylase activity was exhibited by the strain, HFH5, isolated from the DI of stinging catfish. Totally six most promising enzyme-producing autochthonous bacterial strains were identified based on partial 16S rRNA gene sequence analytical results. All the strains showed close (92–99 %) similarity to Bacillus licheniformis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Askarian, F., Z. Zhou, R.E. Olsen, S. Sperstad, and E. Ringø. 2012. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of for fish pathogens. Aquaculture 326–329: 1–8.

    Article  CAS  Google Scholar 

  • Asokan, S., and C. Jayanthi. 2010. Alkaline protease production by Bacillus licheniformis and Bacillus coagulans. Journal of Cell and Tissue Research 10: 2119–2123.

    Google Scholar 

  • Bairagi, A., K. Sarkar Ghosh, S.K. Sen, and A.K. Ray. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International 10: 109–121.

    Article  CAS  Google Scholar 

  • Banerjee, G., A.K. Ray, F. Askarian, and E. Ringø. 2013. Characterization and identification of enzyme-producing autochthonous bacteria from the gastrointestinal tract of two Indian air-breathing fish. Beneficial Microbes 4: 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, S., A. Mukherjee, D. Dutta, and K. Ghosh. 2015. Evaluation of chitinolytic gut microbiota in some carps and optimization of culture conditions for chitinase production by the selected bacteria. Journal of Microbiology, Biotechnology and Food Sciences 5(1): 12–19.

    Article  CAS  Google Scholar 

  • Banerjee, G., A. Nandi, S.K. Dan, P. Ghosh, and A.K. Ray. 2015a. Electron microscopical and bacteriological studies on epithelium-associated bacteria in the pyloric caeca of murrel, Channa punctatus (Bloch). International Journal of Fisheries and Aquatic Studies 2(3): 108–113.

    Google Scholar 

  • Banerjee, G., S.K. Dan, A. Nandi, P. Ghosh, and A.K. Ray. 2015b. Autochthonous gut bacteria in two Indian air-breathing fish, climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus): Mode of association, identification and enzyme producing ability. Polish Journal of Microbiology 64(4): 371–378.

    Article  Google Scholar 

  • Berg, R.D. 1995. Bacterial translocation from the gastrointestinal tract. Trends in Microbiology 3: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Bergh, Ø., B. Hjeltnes, and A.B. Skiftevik. 1997. Experimental infection of turbot Scophthalmus maximus and halibut Hippoglossus hippoglossus yolk sac larvae with Aeromonas salmonicida subsp. salmonicida. Disease of Aquatic Organisms 29: 13–20.

    Article  Google Scholar 

  • Bernfeld, P. 1955. Amylase [alpha] and [beta]. In Methods in enzymology, ed. S.P. Kolowick, and N.O. Kaplan, 149–150. New York, USA: Academic Press.

    Google Scholar 

  • Camesano, T.A., and B. Logan. 2000. Probing bacterial electrosteric interactions using atomic force microscopy. Environmental Science and Technology 34: 3354–3362.

    Article  CAS  Google Scholar 

  • Dan, S.K., and A.K. Ray. 2014. Characterization and identification of phytase producing bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Annals of Microbiology 64: 297–306.

    Article  CAS  Google Scholar 

  • Das, K.M., and S.D. Tripathi. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92: 21–32.

    Article  CAS  Google Scholar 

  • Degering, C.T., M. Eggert, J. Puls, S. Bongaerts, K.H.Maurer Evers, and K.E. Jaeger. 2010. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied and Environmental Microbiology 3: 6370–6376.

    Article  CAS  Google Scholar 

  • Denison, D.A., and R.D. Koehn. 1977. Cellulase activity of Poronia oedipus. Mycologia 69: 592–601.

    Article  CAS  Google Scholar 

  • Ghosh, K., M. Roy, N. Kar, and E. Ringø. 2010. Gastrointestinal bacteria in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): Scanning electron microscopy and bacteriological study. Acta Icthyologica et Piscatoria 40(2): 129–135.

    Article  Google Scholar 

  • Grisez, L., M. Chair, P. Sorgeloos, and F. Ollevier. 1996. Mode of infection and spread of Vibrio anguillarum in turbot Scophthalmus maximus larvae after oral challenge through live feed. Diseases of Aquatic Organisms 26: 181–187.

    Article  Google Scholar 

  • Gutowska, M.A., C. Drazen, and B.H. Robison. 2004. Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comparative Biochemistry and Physiology, Part A 139: 351–358.

    Article  CAS  Google Scholar 

  • Hansen, G.H., E. Strøm, and J.A. Olafsen. 1992. Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae. Applied and Environmental Microbiology 58: 461–470.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen, G.H., and J.A. Olafsen. 1992. Endocytosis of bacteria in yolksac larvae of cod (Gadus morhua L.). In Microbiology in poecilotherms, ed. R. Lesel, 187–191. Amsterdam: Elsevier.

    Google Scholar 

  • Hansen, G.H., and J.A. Olafsen. 1999. Bacterial interaction in early life stages of marine cold water fish. Microbial Ecology 38: 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Hellberg, H., and I. Bjerkäs. 2000. The anatomy of the oesophagus, stomach and intestine in common wolffish (Anarhichas iupus). Acta Veterinaria Scandinavica 41: 283–297.

    PubMed  CAS  Google Scholar 

  • Jhingran, V.G. 1997. Fish and fisheries of India, 3rd ed, 335–337. New Delhi: Hindustan Publishing Corporation.

    Google Scholar 

  • Kar, N., and K. Ghosh. 2008. Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish Journal of Fisheries and Aquatic Sciences 8: 115–120.

    Google Scholar 

  • Knutton, S. 1995. Electron microscopical methods in adhesion. Methods in Enzymology 253: 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Knutton, S., D.R. Lloyd, and A.S. McNeish. 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infection and Immunity 55: 69–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kuperman, B.I., and V.V. Kuz’mina. 1994. The ultrastructure of the intestinal epithelium in fish with different types of feeding. Journal of Fish Biology 44: 181–193.

    Article  Google Scholar 

  • Li, B., and B.E. Logan. 2004. Bacterial adhesion to glass and metal-oxide surfaces. Colloids and Surfaces B: Biointerfaces 36: 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, G.J.H., and J.E. Harris. 1980. Carboxymethyl cellulose activity in the digestive tracts of fish. Journal of Fish Biology 6: 219–233.

    Article  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Foline phenol reagent. Journal of Biological Chemistry 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Luczkovich, J.J., and E.J. Stellwag. 1993. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: Size-related changes in diet and microbial abundance. Marine Biology 116: 381–388.

    Article  Google Scholar 

  • Merrifield, D.L., A. Dimitroglou, G. Bradley, R.T.M. Baker, and S.J. Davies. 2010. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum). I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria. Aquaculture Nutrition 16: 504–510.

    Article  CAS  Google Scholar 

  • Mondal, S., T. Roy, S.K. Sen, and A.K. Ray. 2008. Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyologica Et Piscatoria 38: 1–8.

    Article  Google Scholar 

  • Mondal, S., T. Roy, and A.K. Ray. 2010. Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. Journal of the World Aquaculture Society 41(3): 369–377.

    Article  Google Scholar 

  • Niederholzer, R., and R. Hofer. 1979. The adaptation of digestive enzymes to temperature, season and diet in roach Rutilus rutilus L. and rudd Scardinius erythrophthalmus L. Cellulase. Journal of Fish Biology 15: 411–416.

    Article  CAS  Google Scholar 

  • Ray, A.K., T. Roy, S. Mondal, and E. Ringø. 2010. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research 41(10): 1462–1469.

    CAS  Google Scholar 

  • Ray, A.K., K. Ghosh, and E. Ringø. 2012. Enzyme-producing bacteria isolated from fish gut: A review. Aquaculture Nutrition 18: 465–492.

    Article  CAS  Google Scholar 

  • Ringø, E., E. Strøm, and J.A. Tabachek. 1995. Intestinal micro flora of salmonids: a review. Aquaculture Research 26: 773–789.

    Article  Google Scholar 

  • Ringø, E., and T.H. Birkbeck. 1999. Intestinal microbiota of fish larvae and fry. Aquaculture Research 26: 773–789.

    Article  Google Scholar 

  • Ringø, E., J.B. Lødemel, R. Myklebust, T. Kaino, T.M. Mayhew, and R.E. Olsen. 2001. Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpinus L.)—An electron microscopical study. Journal of Applied Microbiology 90: 294–300.

    Article  PubMed  Google Scholar 

  • Ringø, E., R.E. Olsen, T.M. Mayhew, and R. Myklebust. 2003. Electron microscopy of the intestinal microflora of fish. Aquaculture 227: 395–415.

    Article  Google Scholar 

  • Ringø, E., S. Sperstad, R. Myklebust, S. Refstie, and A. Krogdahl. 2006. Characterization of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261: 829–841.

    Article  CAS  Google Scholar 

  • Ringø, E., R. Myklebustd, T.M. Mayhew, and R.E. Olsen. 2007. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268: 251–264.

    Article  Google Scholar 

  • Roy, T., S. Mondal, and A.K. Ray. 2009. Phytase producing bacteria in digestive tract of some fresh water fish. Aquaculture Research 40: 344–353.

    Article  Google Scholar 

  • Saha, A.K., and A.K. Ray. 1998. Cellulase activity in rohu fingerlings. Aquaculture International 6: 281–291.

    Article  CAS  Google Scholar 

  • Saha, S., R.N. Roy, S.K. Sen, and A.K. Ray. 2006. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (P) and grass carp, Ctenopharyngodon idella (V). Aquaculture Research 37: 380–388.

    Article  CAS  Google Scholar 

  • Sangaralingam, S., T. Kuberan, and M.S. Reddy. 2012. Production of protease from Bacillus licheniformis is AP.MSU7 isolated from the gut of shrimp. Journal of Bioscience Research 3: 136–141.

    Google Scholar 

  • Sarkar, B., and K. Ghosh. 2014. Gastrointestinal microbiota in Oreochromis mossambicus (Peters) and Oreochromis niloticus (Linnaeus): scanning electron microscopy and microbiological study. International Journal of Fisheries and Aquatic Studies 2(2): 78–88.

    Google Scholar 

  • Silvia, G., B. Estevão, and V. Gabriela. 2006. Fish protein hydrolysis by a psychrotrophic marine bacterium isolated from the gut of hake (Merluccius hubbsi). Canadian Journal of Microbiology 52: 1266–1271.

    Article  Google Scholar 

  • Sugita, H., C. Miyajima, and Y. Deguchi. 1991. The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture 92: 267–276.

    Article  CAS  Google Scholar 

  • Sugita, H., J. Kawasaki, and Y. Deguchi. 1997. Production of amylase by the intestinal microflora in cultured freshwater fish. Letters in Applied Microbiology 24: 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Tannock, G.W. 1987. Demonstration of mucosa-associated microbial populations in the colons of mice. Applied and Environmental Microbiology 53: 1965–1968.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tannock, G., R. Blumershine, and R. Archibald. 1987. Demonstration of epithelium associated microbes in the oesophagus of pigs, cattle, rats and deer. FEMS Microbiology Letter 45: 199–203.

    Article  Google Scholar 

  • Van Tassell, M.L., and M.J. Miller. 2011. Lactobacillus adhesion to mucus. Nutrients 3: 613–636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walter, H.E. 1984. Methods of enzymatic analysis. Weinheim: Verlag Chemie. 238.

    Google Scholar 

  • Xu, L.C., and B.E. Logan. 2006. Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy. Colloids and Surfaces B: Biointerfaces 48: 84–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the University Grants Commission (UGC), New Delhi for financial support. Sincere thanks art due to the Head, Department of Zoology, Visva-Bharati University for providing laboratory facilities. Thanks are due to the USIC, University of Burdwan and SAIF, NEHU, Shillong for providing SEM and TEM facilities and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, G., Nandi, A., Dan, S.K. et al. Mode of Association, Enzyme Producing Ability and Identification of Autochthonous Bacteria in the Gastrointestinal Tract of Two Indian Air-Breathing Fish, Murrel (Channa punctatus) and Stinging Catfish (Heteropneustes fossilis). Proc Zool Soc 70, 132–140 (2017). https://doi.org/10.1007/s12595-016-0167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-016-0167-x

Keywords

Navigation