Skip to main content
Log in

Rare Earth Element Deposits: Sources, and Exploration Strategies

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Rare earth elements (REE) include the lanthanide series (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) plus Sc and Y. All these metals occur together in different types of REE deposits such as carbonatites, alkali syenites and monaziterich placers, and are found in more than 250 minerals in the Earth’s crust. The future of the world’s green technologies depends upon their availability and supply. At present, China is responsible for 80% of global REE production. However, countries such as USA, Australia, India, and Kazakhstan also extract and refine significant quantities of REE. These metals occur in primary deposits associated with igneous and hydrothermal processes, and secondary deposits concentrated by sedimentary processes and weathering. However, other types of resources such as ocean bottom sediments, waste rocks in closed mines, river sediments, industrial wastes like red mud, coal, and fly ash have proved to be containing significant amounts of these elements. Besides the beach sand deposits, the Amba Dongar carbonatite complex, and carbonatite plugs hosting REE deposits at Kamthai have been recognized as a potential REE resource in India. Significant concentrations of REE were identified in the deep-sea sediments of Afanasy Niktin Seamount in the Indian Ocean. Integrated exploration methods are playing a key role in the search for new REE mineral deposits. During geochemical exploration studies, portable analytical instruments such as pXRF, pLIBS, portable Raman spectrometer, and a couple of nuclear techniques have enabled successful results in recent times both on and off the land at lower costs, and allowing rapid decision-making on exploration strategies directly in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Ani, T. and Sparapaa, O. (2014) REE minerals in carbonatite, alkaline and hydrothermal rocks, Northern and Central Finland. ERES2014: 1st European Rare Earth Resources Conference, Milos, pp.333–342.

  • Balaram, V. (1996). Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials. Trends in Analytical Chemistry, v.15, pp.475–486.

    Article  Google Scholar 

  • Balaram, V. Banakar, V.K. Subramanyam, K.S.V. Roy, P. Satyanarayanan, M. Mohan, M.R. and Sawant, S.S. (2012). Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean, Curr. Sci., v.110(11), pp.1334–1338.

    Google Scholar 

  • Balaram, V. (2017) Field-portable instruments in mineral exploration: Past, present and future. Jour. Appl. Geochem., v.19(4) pp.382–399.

    Google Scholar 

  • Balaram, V. (2018) Recent advances and trends in ICP mass spectrometry and applications. Current Trends in Mass Spectrometry v.16(2), pp.8–13, 38.

    Google Scholar 

  • Balaram, V. (2019) Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, v.10(4), pp.1285–1303. doi:https://doi.org/10.1016/j.gsf.2018.12.005

    Article  Google Scholar 

  • Balaram, V. (2020) Microwave plasma atomic emission spectrometry (MP-AES) and its applications: A critical review. Microchemical Jour., v.159, 18. doi:https://doi.org/10.1016/j.microc.2020.105483

    Google Scholar 

  • Balaram, V. (2021a) Current and emerging analytical techniques for geochemical and geochronological studies. Geol. Jour., v.56(5), pp.2300–2359. doi:https://doi.org/10.1002/gj.4005

    Google Scholar 

  • Balaram, V. (2021b) Strategies to overcome interferences in elemental and isotopic geochemical studies by quadrupole ICP-MS: A critical evaluation of the recent developments. Rapid Commun. Mass Spectrom., pp.1–29, e9065, doi: https://doi.org/10.1002/rcm.9065.

  • Balaram, V. (2021c) New Frontiers in Analytical Techniques — Opportunities and Challenges in Geochemical Research. Jour. Geol. Soc. India, v.97, pp.331–334. doi:https://doi.org/10.1007/s12594-021-1690-6

    Article  Google Scholar 

  • Balaram, V. (2022) Rare Earth Elements: Sources and Applications, in Environmental Technologies to Treat Rare Earth Elements Pollution: Principles and Engineering by Arindam Sinharoy and Piet N. L. Lens (Eds.), IWA Publishers, London; doi: https://doi.org/10.2166/9781789062236_0073

  • Balaram, V., Rahaman, W. and Roy, P. (2022) Recent Advances in MC-ICP-MS Applications in the Earth, Environmental Sciences: Challenges and Solution, Geosystems and Geoenvironment. doi:https://doi.org/10.1016/j.geogeo.2021.100019

  • Balaram, V. and Subramanyam, K.S. V. (2022) Sample Preparation for Geochemical Analysis: Strategies and Significance Advances in Sample Preparation. doi:https://doi.org/10.1016/j.sampre.2022.100010

  • Balaram, V. and Sawant, S.S. (2022) Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies. Minerals, v.12, pp.394. doi:https://doi.org/10.3390/min12040394

    Article  Google Scholar 

  • Beyssac, O. (2020) New Trends in Raman Spectroscopy: From High-Resolution Geochemistry to Planetary Exploration. Elements, v.16, pp.117–122. doi:https://doi.org/10.2138/gselements.16.2.117

    Article  Google Scholar 

  • Bhushan, S.K. and Kumar, A. (2013) First Carbonatite hosted REE deposit from India. Jour. Geol. Soc. India, v.81, pp.41–60.

    Article  Google Scholar 

  • Booysen, R., Jackisch, R., Lorenz, S., Zimmermann, R., Kirsch, M., Nex, P.A.M and Gloaguen, R (2020) Detection of REEs with lightweight UAV based hyperspectral imaging Scientific Reports, 10:17450. doi:https://doi.org/10.1038/s41598-020-74422-0.

    Google Scholar 

  • Brahma, S., Sahoo, S. and Durai, P.R. (2022) First Report of Carbonatite from Gundlupet Area, Western Dharwar Craton, Karnataka, Southern India. Jour. Geol. Soc. India, v.98, pp.35–40; doi:https://doi.org/10.1007/s12594-022-1924-2

    Article  Google Scholar 

  • Brandt, S., Fassbender, M.L., Klemd, R., Macauley, C., Felfer, P and Haase, K.M. (2021) Cumulate olivine: A novel host for heavy rare earth element mineralization. Geology, v.49(4), pp.457–462. doi:https://doi.org/10.1130/G48417.1

    Article  Google Scholar 

  • Bustos, N., Marquardt, C., Belmer, A. and Cordero, P. (2022) Regolith-hosted rare earth exploration in the Chilean Coastal Range of the Central Andes. Jour. Geochem.Explor., 106934; doi:https://doi.org/10.1016/j.gexplo.2021.106934

  • Chakhmouradian, A.R. and Zaitsev, A.N. (2012). Rare Earth Mineralization in Igneous Rocks: Sources and Processes. Elements, v.8(5), pp.347–353. doi:https://doi.org/10.2113/gselements.8.5.347.

    Article  Google Scholar 

  • Chakhmouradian, A.R. and Wall, F. (2012) Rare earth elements: Minerals, mines, magnets and more. Elements, v.8, pp.333–340. doi:https://doi.org/10.2113/gselements.8.5.333

    Article  Google Scholar 

  • Deng, Y. (2022) Significant contribution of seamounts to the oceanic rare earth elements budget. Mendeley Data, v.2, doi: https://doi.org/10.17632/g6zmthh6w5.2

  • Elbashier, E., Mussa, A., Hafiz, M.A. and Hawari, A.H. (2021) Recovery of rare earth elements from waste streams using membrane processes: An overview. Hydrometallurgy, v.204, 105706, doi:https://doi.org/10.1016/j.hydromet.2021.105706

    Article  Google Scholar 

  • GSI Report (2021) First report on High REE occurrence in Godavari Gondwana Basin, Telangana, pp.12–13.

  • Harmon, R.S., Lawley, C.J.M., Watts, J., Harraden, C.J., Somers, A.M. and Hark, R.R. (2019) Laser-Induced Breakdown Spectroscopy—An Emerging Analytical Tool for Mineral Exploration. Minerals, v.9, pp.718; doi:https://doi.org/10.3390/min9120718

    Article  Google Scholar 

  • Hartzler, D. A., Bhatt, C. R., Jain, J. C and McIntyre, D. L (2019) Evaluating laser-induced breakdown spectroscopy sensor technology for rapid source characterization of rare earth elements. Jour. Energy Resour. Tech., Trans. ASME, pp.1–14; doi: https://doi.org/10.1115/1.4042747

  • Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A. (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev., v.51, pp.1–14. doi:https://doi.org/10.1016/j.oregeorev.2012.12.001

    Article  Google Scholar 

  • Hein, J.R., Conrad, T.C. and Staudige, H. (2010) Seamount mineral deposits: A source of rare metals for high technology industries, Oceanography, v.23, pp.184–189; doi:https://doi.org/10.5670/oceanog.2010.70

    Article  Google Scholar 

  • Hou, G., Wu, C., Li, Y., Wei, S., Zhang, Y., Qi, Y., and Xiang, S. (2021) Discovery and geological significance of REE deposit in southern Songxian County, East Qinling, China. Ore Geol. Rev., v.129, 103841. doi:https://doi.org/10.1016/j.oregeorev.2020.1038

    Article  Google Scholar 

  • Huang, X.-W., Zhou, M.-F., Qiu, Y.-Z., and Qi, L. (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geol. Rev., v.65, pp.884–899. doi:https://doi.org/10.1016/j.oregeorev.2014.09.0

    Article  Google Scholar 

  • IAEA (2003) Guidelines for radioelement mapping using gamma ray spectrometry data: International Atomic Energy Agency (IAEA).

  • Johannessoni, K.H. and Hendry, M.J. (2000) Rare earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta, v.64(9), pp.1493–1509; doi:https://doi.org/10.1016/S0016-7037(99)00402-0

    Article  Google Scholar 

  • Karimzadeh, S and Tangestani, M. H (2022) Potential of Sentinel-2 MSI data in targeting rare earth element (Nd3+) bearing minerals in Esfordi phosphate deposit, Iran. The Egyptian Jour. Remote Sensing and Space Sci., doi:https://doi.org/10.1016/j.ejrs.2022.04.001

  • Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., Iwamori, H. (2011) Deep-sea mud in the Pacific Ocean as a potentialresource for rare-earth elements. Nature Geoscience, v.4, 535e539. doi:https://doi.org/10.1038/ngeo1185

    Article  Google Scholar 

  • Kravchenko, S.M., Pokrovsky, B.G. (1995) The Tomtor alkaline ultrabasic massif and related REE-Nb deposits, northern Siberia. Econ. Geol., v.90, pp.676–689

    Article  Google Scholar 

  • Krishnamurthy, P. (2019) Carbonatites of India. Jour. Geol. Soc. India, v.94, pp.117–138.

    Article  Google Scholar 

  • Krishnamurthy, P. (2020) Rare metal (RM) and rare earth element (REE) resources: World scenario with special reference to India. Jour. Geol. Soc. India, v.95, pp.465–474.

    Article  Google Scholar 

  • Kynicky, J., Smith, M.P. and Xu, C. (2012) Diversity of rare earth deposits: the key example of China. Elements, v.8, pp.361–367.

    Article  Google Scholar 

  • Lapworth, D. J., Knights, K. V., Key, R. M., Johnson, C. C., Ayoade, E., Adekanmi, M. A., … Pitfield, P. E. J. (2012) Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa. Appl. Geochem., v.27(6), pp.1035–1052. doi:https://doi.org/10.1016/j.apgeochem.2012.02.0

    Article  Google Scholar 

  • Lemiere, B. (2018) A Review of pXRF (Field Portable X-ray Fluorescence) Applications for Applied Geochemistry. Jour. Geochem. Explor., v.188, pp.350–36. doi:https://doi.org/10.1016/j.gexplo.2018.02.006

    Article  Google Scholar 

  • Leybourne, M.I. and Cameron, E.M. (2010) Groundwater in geochemical exploration. Geochemistry: Exploration, Environment, Analysis, v.10(2), pp.99–118. doi:https://doi.org/10.1144/1467-7873/09-222

    Google Scholar 

  • Lister, T.E., Diaz, L.A., Clark, G.G. and Keller, P. (2016) Process development for the recovery of critical materials from electronic waste. International Mineral Processing Congress. Idaho National Laboratory, USA, pp.1–12.

    Google Scholar 

  • Liu, H., Guo, H., Xing, L., Zhan, Y., Li, F., Shao, J., … Li, C. (2016) Geochem ical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. Jour. Asian Earth Sci., v.117, pp.33–51. doi:https://doi.org/10.1016/j.jseaes.2015.11.021

    Article  Google Scholar 

  • Long, K.R., Van Gosen, B.S., Foley, N.K and Cordier, N. (2010) The Geology of Rare Earth Elements, in The Principal Rare Earth Elements Deposits of the United States, USGS Scientific Investigations Report 2010–5220

  • McClenaghan, M.B., Spirito, W.A., Day, S.J.A., McCurdy, M.W., McNeil, R.J and Adcock, S.W (2022) Overview of surficial geochemistry and indicator mineral surveys and case studies from the Geological Survey of Canada’s GEM Program. Geochemistry: Exploration, Environment, Analysis, v.22, pp.1–22. doi:https://doi.org/10.1144/geochem2021-070

    Google Scholar 

  • McLeod, C.L. and Krekeler, M.P.S (2017) Sources of Extra-terrestrial Rare Earth Elements: To the Moon and Beyond. Resources, v.6, pp.40. doi:https://doi.org/10.3390/resources6030040

    Article  Google Scholar 

  • Miller, K.A., Brigden, K., Santillo, D., Currie, D., Johnston, P. and Thompson, K.F. (2021) Challenging the Need for Deep Seabed Mining from the Perspective of Metal Demand, Biodiversity, Ecosystems Services, and Benefit Sharing. Front. Mar. Sci., v.8, 706161. doi: https://doi.org/10.3389/fmars.2021.706161

    Article  Google Scholar 

  • Milinovic, J., Rodrigues, F.J.L., Barriga, F.J.A.S., Murton, B.J. (2021) Ocean-Floor Sediments as a Resource of Rare Earth Elements: An Overview of Recently Studied Sites. Minerals, v.11, pp.142. doi:https://doi.org/10.3390/min11020142

    Article  Google Scholar 

  • Morgenstern, R., Turnbull, R. E., Hill, M. P., Durance, P.M.J and Rattenbury, M.S. (2018) Rare Earth Element Mineral Potential in New Zealand. G N S Science Consultancy Report, pp.1–220.

  • Mott, A.V., Bird, D.K., Grove, M., Rose, N., Bernstein, S., Mackay, H. and Krebs, J. (2013) Karrat Isfjord: A Newly Discovered Paleoproterozoic Carbonatite-Sourced REE Deposit, Central West Greenland. Econ. Geol., v.108(6), pp.1471–1488. doi:https://doi.org/10.2113/econgeo.108.6.1471

    Article  Google Scholar 

  • Obhogaš, J., Sudac, D., Meric, I. et al. (2018) In-situ measurements of rare earth elements in deep sea sediments using nuclear methods. Scientific Rep., v.8, 4925. doi:https://doi.org/10.1038/s41598-018-23148-1

    Article  Google Scholar 

  • Pak, S.J., Seo, I., Lee, K.Y and Hyeong, K (2019) Rare Earth Elements and Other Critical Metals in Deep Seabed Mineral Deposits: Composition and Implications for Resource Potential. Minerals, v.9(3) doi:https://doi.org/10.3390/min9010003

  • Rethfeldt, N., Brinkmann, P., Riebe, D., Beitz, T., Köllner, N., Altenberger, U., Löhmannsröben, H.-G. (2021) Detection of Rare Earth Elements in Minerals and Soils by Laser-Induced Breakdown Spectroscopy (LIBS) Using Interval PLS. Minerals, v.11, 1379. doi:https://doi.org/10.3390/min11121379

    Article  Google Scholar 

  • Sakellariadou, F., Gonzalez, F.J., Hein, J.R., Rincón-Tomás, B., Arvanitidis, N. and Kuhn, T (2022) Seabed mining and blue growth: exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report). Pure Appl. Chem., pp.1–23.

  • Sarapää, O., Al Ani, T., Lahti, S. I., Lauri, L. S., Sarala, P., Torppa, A. and Kontinen, A. (2013). Rare earth exploration potential in Finland. Jour. Geochem. Explor., v.133, pp.25–41. doi:https://doi.org/10.1016/j.gexplo.2013.05.003

    Article  Google Scholar 

  • Sarala, P. and Koskinen, H. (2018) Application of the portable X-Ray Diffraction (pXRD) analyser in surficial geological exploration. Geologi, v.70, pp.58–68.

    Google Scholar 

  • Sarala, P. and Sarapää O. (2013) Rare earth element and gold exploration in glaciated terrain — example from the Mäkärä area, Northern Finland. Geochemistry Exploration Environment Analysis v.13(2), pp.131–143. doi: https://doi.org/10.1144/geochem2012-136

    Article  Google Scholar 

  • Sarala, P. (2015) Surficial geochemical exploration methods. Exploration methods, Mineral Deposits of Finland, pp.711–730. doi:https://doi.org/10.1016/B978-0-12-410438-9.00027-3

  • Satyanarayanan, M., Balaram, V., Sawant, S. S., Subramanyam, K.S.V., Krishna, V.B., Dasaram and Manikyamba, C. (2018) Rapid determination of REE, PGE and other trace elements in geological and environmental materials by HR-ICP-MS, Atomic Spectroscopy, v.39(1), pp.1–15.

    Article  Google Scholar 

  • Sengupta, D and Van Gosen, B. S (2016) Placer-Type Rare Earth Element Deposits, Rare Earth and Critical Elements in Ore Deposits, Philip L. Verplanck, Murray W. Hitzman (Eds.), doi:https://doi.org/10.5382/Rev.18.04

  • Shah, A.K., Taylor, R.D., Walsh, G.J. and Phillips, J.D. (2021) Integrated geophysical imaging of rare earth element-bearing iron oxide-apatite deposits in the Eastern Adirondack Highlands, New York. Geophysics, v.86(1), pp.B37–B54. doi:https://doi.org/10.1190/geo2019-0783.1

    Article  Google Scholar 

  • She, H.D., Fan, H.R., Yang, K.F., Li, X.C., Wang, Q.W., Zhang, L.F., Liu, S., Li, X.H. and Dai, Z.H. (2021) In situ trace elements of magnetite in the Bayan Obo REE-Nb-Fe deposit: Implications for the genesis of meso-Proterozoic iron mineralization. Ore Geol. Rev., v.139, Part B, 104574; doi:https://doi.org/10.1016/j.oregeorev.2021.104574

    Article  Google Scholar 

  • Simandl, G.J., Stone, R.S., Paradis, S. et al. (2014a) An assessment of a handheld X-ray fluorescence instrument for use in exploration and development with an emphasis on REEs and related specialty metals. Mineral. Deposita, v.49, pp.999–1012. doi:https://doi.org/10.1007/s00126-013-0493-0

    Article  Google Scholar 

  • Simandl, G.J., Fajber, R. and Paradis, S. (2014b) Portable X-ray fluorescence in the assessment of rare earth element enriched sedimentary phosphate deposits. Geochemistry: Exploration, Environment, Analysis, v.14, pp.161–169. doi:https://doi.org/10.1144/geochem2012-180

    Google Scholar 

  • Singh, Y. (2020a) Chapter 8. Potential Natural Resources Rare Earth Element Resources: Indian Context, Society of Earth Scientists Series. Springer Nature, Switzerland AG, pp.311–347.

    Google Scholar 

  • Singh, Y. (2020b) Beach Sand Deposits. doi:https://doi.org/10.1007/978-3-030-41353-8_2.

  • Sinha, D.K. (2020) Atomic Minerals Directorate for Exploration and Research. Proc. Indian Natl. Sci. Acad., v.86(1), pp.755–758.

    Google Scholar 

  • Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., Nakamura, K., Kimura, J-I., Chang, Q., Hamada, M., et al. (2018) The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, v.8, 5763. doi:https://doi.org/10.1038/s41598-018-23948-5.

    Article  Google Scholar 

  • Wang, Z.Y., Fan, H.R., Zhou, L., Yang, K.F. and She, H.D. (2020) Carbonatite-related REE deposits: An overview. Minerals, v.10, pp.965. doi:https://doi.org/10.3390/min10110965

    Article  Google Scholar 

Download references

Acknowledgement

The author thanks the Director, CSIR-National Geophysical Research Institute, Hyderabad for constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Balaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaram, V. Rare Earth Element Deposits: Sources, and Exploration Strategies. J Geol Soc India 98, 1210–1216 (2022). https://doi.org/10.1007/s12594-022-2154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2154-3

Navigation