Skip to main content
Log in

Quantitative Analysis of Drainage Basin Parameters towards better Management of Damodar River, Eastern India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Morphometric analysis of a drainage basin is important for the study of river basin evaluation, analysis of flood hazard, watershed prioritization, and for better management of the river. Primarily to mitigate flood, India’s first multipurpose river valley project was implemented on Damodar river valley, disregarding in depth study about the basic morphometry of the river. After that, in last 50–60 years, many researchers have worked on this topic in selected watersheds or parts of Damodar river basin. The present study extended the work to entire Damodar river basin of eastern India and demarcated the basin from 59 nos. of SOI topographical maps (R.F.1:50,000) and satellite images. For detailed analysis, the whole basin was divided into 103 watersheds and each watershed was treated as a unit for the analysis. Then twenty-three morphometric variables (comprising of linear, areal and relief parameters) were used to generate dataset of the morphometric characteristics of all watersheds. Using these morphometry data, watersheds are classified into different groups based on their similarities. Further, watershed-wise amount of runoff, sediment yield and environmental flow of Damodar river have been estimated for flood and erosion management purpose. Finally, watersheds are divided into different classes as per their priority in management process. This important study may assist us to understand and manage the river properly for the future of human populations during Anthropocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulkareem, J.H. Pradhan, B. Sulaiman, W.N.A. Jamil, N.R. (2018) Quantifcation of Runof as Infuenced by Morphometric Characteristics in a Rural Complex Catchment. Earth Systems Environ., v.2, pp.145–162

    Article  Google Scholar 

  • Acreman, M., Dunbar, M.J. (2004) Defining environmental river flow requirements a review. Hydrol. Earth System Sci., v.8, pp.861–876.

    Article  Google Scholar 

  • Ahmed, M., Youssef, A.M., Pradhan, B. and Hassan, A.M. (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci., v.62, pp.611–623. DOI https://doi.org/10.1007/s12665-010-0551-1

    Article  Google Scholar 

  • Alam, A. Ahmed, and Sammonds, P. (2020) Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary Internat, DOI:https://doi.org/10.1016/j.quaint.2020.04.047

  • Andrews, R.G. (1954) The use of relative infiltration indices in computing runoff (unpublished). Soil Conservation Service, Fort Worth, Texas, 6p.

  • Angilliri, Y.E. (2008) Morphometric analysis of Colanguil river basin and flash flood hazard, San Jaun, Argentina. Environ. Geol., v.55(1), pp.107–111.

    Article  Google Scholar 

  • Angillieri Y.E. (2012) Morphometric characterization of the Carrizal basin applied to the evaluation of flash floods hazard, San Juan, Argentina. Quaternary Internat., v.253, pp.74–79

    Article  Google Scholar 

  • Arthington, A.H. 2012. Environmental flows. Saving rivers in the Third Millennium. University of California Press, Berkeley.

    Book  Google Scholar 

  • Asfaw, D. and Workineh, G. (2019) Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation. Internat. Soil Water Conserv. Res., v. 7, pp.150–157

    Article  Google Scholar 

  • Babu, K.J., Sreekumar, S. and Aslam, A. (2016) Implication of drainage basin parameters of a tropical river basin of South India. Appl. Water Sci., v.6, ppp.67–75. DOI: https://doi.org/10.1007/s13201-014-0212-8

    Article  Google Scholar 

  • Baghel R. (2014) River Control in India: Spatial, Governmental and Subjective Dimensions; DOI https://doi.org/10.1007/978-3-319-04432-3; Springer International Publishing, Switzerland.

    Book  Google Scholar 

  • Baghel, R. and Nüsser, M. (2010) Discussing large dams in Asia after the World Commission on Dams: Is a political ecology approach the way forward? Water Alternatives, v.3(2), pp.231–248.

    Google Scholar 

  • Bahrami, S. (2013) Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics. Tectonophysics, v.608, pp.914–928.

    Article  Google Scholar 

  • Bandyopadhyay, S., Ghosh, P.K., Jana, N.C. and Sinha, S. (2016) Probability of flooding and vulnerability assessment in the Ajay River, Eastern India: implications for mitigation. Environ. Earth Sci., v.75(7), pp.1–22.

    Article  Google Scholar 

  • Bhat, M.S., Alam, A., Ahmad, S., Farooq, H., Ahmad, B. (2019) Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environ. Earth Sci., v.78, pp.54. DOI:https://doi.org/10.1007/s12665-019-8046-1

    Article  Google Scholar 

  • Bhatt S. & Ahmed S.A. (2014) Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM, Geocarto Internat., v.29(8), pp.878–894. DOI: https://doi.org/10.1080/10106049.2013.868042

    Article  Google Scholar 

  • Bhattacharya, R.K., Das Chatterjee, N., Dolui, G. (2016) Grain size characterization of instream sand deposition in controlled environment in river Kangsabati, West Bengal. Model. Earth Syst. Environ., v.2, pp.118. DOI https://doi.org/10.1007/s40808-016-0173-z

    Article  Google Scholar 

  • Bhattacharyya, K. (1998) Applied geomorphological study in a controlled tropical river — The case of the Damodar between Panchet reservoir and Falta. Unpublished PhD. Thesis. The University of Burdwan. West Bengal.

  • Bhattacharyya, K. (2011) The Lower Damodar River, India: understanding the human role in changing fluvial environment. New York: Springer.

    Book  Google Scholar 

  • Bishop, M.P., Shroder, J.F., Bonk, R. and Olsenholler, J. (2002) Geomorphic change in high mountains: A western Himalayan perspective. Global and Planetary Change, v.32, pp311–329.

    Article  Google Scholar 

  • Biswas, S.S. (2015) Multipurpose Projects Serve as a Flood Controller-Is this the Reality? A Study of DVC Projects of the Damodar River of West Bengal, India. Jour. Environ. Earth Sci., v.5(1).

  • Bookhagen, B. (in review): High resolution spatiotemporal distribution of rainfall seasonality and extreme events based on a 12-year TRMM time series, in review.

  • Brandt, S.A. (2000) Classification of geomorphological effects downstream of dams. Catena, v. 40, pp.375–401.

    Article  Google Scholar 

  • Buczek, K. and Górnik, M. (2020) Evaluation of tectonic activity using morphometric indices: case study of the Tatra Mts. (Western Carpathians, Poland). Environ. Earth Sci., v.79, pp.176. DOI:https://doi.org/10.1007/s12665-020-08912-9

    Article  Google Scholar 

  • Chandran, M.S.S. and Ajaykumar B. (2018) Quantitative Geomorphological Analysis to Infer the Hydrological Behaviour of Streams Draining into the Vembanad Lake — A Ramsar Site along the Southwest Coast of India. Jour. Geol. Soc. India, v.92, pp.45–53.

    Article  Google Scholar 

  • Chatterjee, S.P. (1969) The Planning Atlas of Damodar Valley Region. Technical Advisory Committee, Calcutta Unit.

    Google Scholar 

  • Chirala, U., Nooka Ratnam, K. and Gurram, M.K. (2012) Correlation of Geomorphometric Parameters for the Hydrological Characterization of Meghadrigedda Watershed, Visakhapatnam, India—A GIS Approach. Internat. Jour. Engg. Sci. Tech., v. 4, pp.3169–3183.

    Google Scholar 

  • Choudhari, P.P. Nigam, G.K. Singh, S.K. and Thakur, S. (2018) Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geol., Ecol. Landscapes, v.2(4), pp.256–267, DOI: https://doi.org/10.1080/24749508.2018.1452482

    Article  Google Scholar 

  • Choudhury S. (2011) Damodar Valley Corporation: the Missed Opportunity. Jour. Infrastructure Development, v.3(2), pp.117–126. DOI: https://doi.org/10.1177/097493061100300202.

    Article  Google Scholar 

  • Choudhury, S.K. and Datta, A.N. (1973) Bouguer Gravity and its Geologic Evaluation in the Western Part of the Bengal Basin and adjoining Area, India. Geophysics, v.38(4), pp.691–700.

    Article  Google Scholar 

  • Church, M. (1995) Geomorphic Response to River Flow Regulation: Case Studies and Time-Scales. Regulated Rivers: Research & Management, v.11, pp.3–22.

    Article  Google Scholar 

  • Crutzen, P.J. (2002) Geology of mankind. Nature, v.415, pp.23–23.

    Article  Google Scholar 

  • Crutzen, P.J., Stoermer E.F. (2000) The “Anthropocene”. IGBP Newsletter, v.41, pp.17–18

    Google Scholar 

  • Das, D. (2014) Identification of Erosion Prone Areas by Morphometric Analysis Using GIS. Jour. Inst. Eng. India, Ser. 95(1), pp.61–74. DOI: https://doi.org/10.1007/s40030-014-0069-8

    Article  Google Scholar 

  • Das, S. and Biswas, A.B. (1968) Groundwater Investigation in Parts of The Burdwan and Birbhum District, West Bengal. Geol. Surv. India, Unpubld. Report.

  • Dasgupta S., Pande P., Ganguly D., Iqbal Z., Sanyal K., Venkatraman N. V., Sural B., Harendranath L., Mazumdar K., Sanyal S., Roy A., Das L. K., Misra P.S., Gupta H. (2000) Seismotectonic atlas of India and its environs. In: Narula P. L., Acharyya S. K., Banerjee J. (Eds.), Geological Survey of India, Special Publication No. 59, Sheet 23: Singhbhum and Chotonagpur Crustal Province of the Eastern Indian Shield & Sheet 24: Chhotanagpur Gneissic Terrain, Rajmahal Basin and Bengal Basin.

  • Deffontaines, B., Chorowicz, J., (1991) Principles of drainage basin analysis from multisource data: application to the structural analysis of the Zaire Basin. Tectonophysics, v. 194, pp.237–263.

    Article  Google Scholar 

  • Dhar, O. N. and Nandargi, S. (2003) Hydrometeorological aspects of floods. Natura; Hazards, v.28, pp.1–33

    Article  Google Scholar 

  • Doke, A., Pardeshi, S.D. and Das, S. (2020) Drainage morphometry and groundwater potential mapping: application of geoinformatics with frequency ratio and influencing factor approaches Environ. Earth Sci., v.79, pp.393. DOI: https://doi.org/10.1007/s12665-020-09137-6

    Article  Google Scholar 

  • Doornkamp, J.C. and King, C. (1971) Numerical Analysis in Geomorphology. Edward Arnold, London.

    Google Scholar 

  • Erskine, W., Geary, P.M. and Outhet, D.N. (1985) Potential impacts of sand and gravel extraction on the Hunter River, New South Wales. Australian Geographical Studies 23.

  • Falkenmark, M., Erlandsson, L.W. & Rockström J. (2019) Understanding of water resilience in the Anthropocene. Jour. Hydrol. DOI:https://doi.org/10.1016/j.hydroa.2018.100009

  • Faniran, A. (1968) The Index of Drainage Intensity — A Provisional New Drainage Factor. Australian Jour. Sci., v.31, pp.328–330.

    Google Scholar 

  • Farhan, Y., Elmaji, I. and Khalil O. (2016) GIS-Based Morphometric Analysis of Fourth-Order Sub-Basins of the Zerqa River (Northern Jordan) Using Multivariate Statistical Techniques. Natural Resour., v.7, pp.461–480. DOI:https://doi.org/10.4236/nr.2016.78040

    Article  Google Scholar 

  • Francois, B., Zoccatelli, D. and Borga M. (2017) Assessing small hydro/solar power complementarity in ungauged mountainous areas: a crash test study for hydrological prediction methods. Energy; DOI: https://doi.org/10.1016/j.energy.2017.03.090.

  • Galay V.J. (1983) Causes of river bed degradation. Water Resour. Res., v. 19(5), pp.1057–1090

    Article  Google Scholar 

  • Galay, V. J., Pentland, R.S. and Halliday, R.A. (1985) Degradation of the South Saskatchewan River below Gardiner Dam, Can. Jour. Civil Eng., v.12, pp.849–862.

    Google Scholar 

  • Garde, R.J. (2006) River Morphology. New Age International (P) Ltd. Publ., pp.11–31.

  • Gayen, S., Bhunia, G. S., Shit, P. K. (2013) Morphometric analysis of Kangsabati-Dwarakeshwar interfuves area in West Bengal, India using ASTER DEM and GIS techniques. Geol. Geosci., v.2(4), pp.1–10.

    Google Scholar 

  • Gerber N., Nkonya E., von Braun J. (2014) Land Degradation, Poverty and Marginality. In: von Braun J., Gatzweiler F. (eds) Marginality. Springer, Dordrecht. DOI:https://doi.org/10.1007/978-94-007-7061-4_12

    Google Scholar 

  • Germanos, D. and Ritter, D. F. (1988) Tributary Response to Local Base Level Lowering Below a Dam. Regulated Rivers: Research and Management, v.2, pp.11–24.

    Article  Google Scholar 

  • Ghosh. P. K., Bandyopadhyay, S., Jana, N. C. and Mukhopadhyay, R. (2016) Sand quarrying activities in an alluvial reach of Damodar River, Eastern India: towards a geomorphic assessment, International Jour. River Basin Management, v.14(4), DOI: https://doi.org/10.1080/15715124.2016.1209509.

  • Ghosh, P.K. and Jana, N.C. (2017) Groundwater potentiality of the Kumari River Basin in droughtprone Purulia upland, Eastern India: a combined approach using quantitative geomorphology and GIS. Sustain. Water Resour. Manag, v. 4(3). DOI: https://doi.org/10.1007/s40899-017-0142-3

  • Ghosh, S. (2014) The Impact of the Damodar Valley Project On the Environmental Sustainability of the Lower Damodar Basin in West Bengal, Eastern India. OIDA Internat. Jour. Sustain. Develop., v.7(2), pp.47–54. Available at SSRN: https://ssrn.com/abstract=2441593

    Google Scholar 

  • Ghosh, S. and Guchhait, S.K. (2016) Dam-induced changes in flood hydrology and flood frequency of tropical river: a study in Damodar River of West Bengal, India. Arab. Jour. Geosci. DOI https://doi.org/10.1007/s12517-015-2046-6.

  • Ghosh, S. and Mistri, B. (2013) Performance of D.V.C. in Flood Moderation of Lower Damodar River, India and Emergent Risk of Flood. Eastern Geographer, v.XIX(1), pp.55–66.

    Google Scholar 

  • Ghosh, S. and Sivakumar, R. (2019) An assessment of geomorphometric anomalies and their significance on the seismotectonic activity through geoinformatics. Jour. Earth Syst. Sci., v.128, pp.178. DOI: https://doi.org/10.1007/s12040-019-1175-9

    Article  Google Scholar 

  • Global Administrative Areas (2015) Version 2.5. University of California, Berkely. [digital geospatial data]. Available online: http://www.gadm.org

  • Grant, G.E., Schmidt, J.C., Lewis, S.L. (2003) A Geological Framework for Interpreting Downstream Effects of Dams on Rivers. A Unique River Water Science and Application 7. American Geophysical Union

  • Gregory, F.J., Hounslow, M. W., Kerr, A. C., Pearson, P., Knox, R., Powell, J., Waters, C., Marshall, J., Oates, M., Rawson, P., Stone, P. (2008) Are we now living in the Anthropocene? GSA Today, v. 18(2), pp.4–8.

    Article  Google Scholar 

  • Gregory, K. J. and Walling, D. E. (1973) Drainage basin form and process, a geomorphological approach. Arnold, London.

    Google Scholar 

  • Gupta H., Kao S., Dai M. (2012) The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. Jour. Hydrol., v.464–465, pp.447–458

    Article  Google Scholar 

  • Gupta S.N.P. (2004) Geomorphology of Damodar Basin. Rajesh Publication, New Delhi.

    Google Scholar 

  • Gupta, S.K., Tyagi, J., Sharma, G., Jethoo., A.S. & Singh P.K. (2019) An Event-Based Sediment Yield and Runoff Modeling Using Soil Moisture Balance/Budgeting (SMB) Method. Water Resources Management. DOI:https://doi.org/10.1007/s11269-019-02329-1

  • Gutema, D., Kassa, T., Sifan, A., & Koriche (2017). Morphometric analysis to identify erosion prone areas on the upper blue Nile using GIS: case study of Didessa and Jema sub- basin, Ethiopia. Internat. Res. Jour. Eng. Tech., v.04(08).

  • Hack, J.T. (1973) Stream profile analysis and stream-gradient index. Jour. Res. US Geol. Surv., v.1 pp.421–429.

    Google Scholar 

  • Hoffmann, M. et al. (2010) The Impact of Conservation on the Status of the World’s Vertebrates. Science, v.330, pp.1503. DOI: https://doi.org/10.1126/science.1194442.

    Article  Google Scholar 

  • Holeman, J. N. (1968) The sediment yield of major rivers of the world. Water Resour. Res., v.4(4), pp.737–747.

    Article  Google Scholar 

  • Horton, R. E. (1932) Drainage basin characteristics. Trans Am Geophys Union 13:pp.350–361

    Article  Google Scholar 

  • Horton, R.E. (1945) Erosional developments of streams and their drainage basin: hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Amer., v.56, pp.275–370.

    Article  Google Scholar 

  • Hotelling H. (1933) Analysis of a complex of statistical variables into principal components. Jour. Educ. Psychol., v.24, pp.407–441. DOI:https://doi.org/10.1037/h0071325.

    Google Scholar 

  • Ittekkot, V. and Lanne, R.W.P.M. (1991) Fate of riverine particulate organic matter. In: E.T. Degens, S. Kempe and J.E. Richey (Eds.), Biogeochemistry of major world rivers. NewYork: Wiley, pp.233–243.

    Google Scholar 

  • Jahan, C. S., Rahaman, Md. F., Arefin, R., Shamser, A. and Mazumder, Q. H. (2018) Morphometric Analysis and Hydrological Inference for Water Resource Management in Atrai-Sib River Basin, NW Bangladesh Using Remote Sensing and GIS Technique. Jour. Geol. Soc. India, v.91, pp.613–620.

    Article  Google Scholar 

  • Jain, M. K. and Das D. (2009) Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing. Water Resour. Manag., v.24, pp.2091–2112, DOI https://doi.org/10.1007/s11269-009-9540-0.

    Article  Google Scholar 

  • Jain, S. K. (2012) Assessment of environmental flow requirements. Hydrol. Process. DOI: https://doi.org/10.1002/hyp.9455.

  • Jain, S.K., and Kumar P. (2014): Environmental flows in India: towards sustainable water management, Hydrol. Sci. Jour., DOI: https://doi.org/10.1080/02626667.2014.896996.

  • Jain M. K. and Das D. (2010) Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing. Water Resour. Manage., v.24, pp.2091–2112. DOI: https://doi.org/10.1007/s11269-009-9540-0

    Article  Google Scholar 

  • Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E. (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org

  • Jasmin, I. and Mallikarjuna, P. (2013) Morphometric analysis of Araniar river basin using remote sensing and geographical information system in the assessment of groundwater potential. Arab. Jour Geosci., v.6, pp.3683–3692. DOI https://doi.org/10.1007/s12517-012-0627-1

    Article  Google Scholar 

  • Johnstone, D. and Cross, W. P. (1949) Elements of applied hydrology. Ronald, New York.

    Google Scholar 

  • Kabite, G., and Gessesse, B. (2018) Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. Internat. Soil Water Conserv. Res., v.6(2), pp.175–183.

    Article  Google Scholar 

  • Kadam, A. K. Jaweed, T. H., Kale, S. S. Umrikar, B. N. & Sankhua, R. N. (2019) Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: a remote sensing and GIS approach, Geomatics, Natural Hazards and Risk, v.10(1), pp.986–1006, DOI: https://doi.org/10.1080/19475705.2018.1555189

    Article  Google Scholar 

  • Kailasam, L.N. (1979) Plateau Uplift in Peninsular India. Tectonophysics, v.61, pp.243–269.

    Article  Google Scholar 

  • Kendall, M.G. (1975) Rank Correlation Methods, Charles Griffin, London. Keshri, K. N., Jain, R. K., Roy, V. D. (2012). Role of DVC dams in ûood management. Retrieved from http://indiawaterweek.water.tallyfox.com/documents/role-dvc-dams-ûood-management.

  • Kondolf G. M. (1997) Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manage., v.21(4), pp.533–551.

    Article  Google Scholar 

  • Kumar, D. Singh, D. S. Prajapati, S. K. Khan, I. Gautam, P. K. Vishawakarma B. (2018) Morphometric Parameters and Neotectonics of Kalyani River Basin, Ganga Plain: A Remote Sensing and GIS Approach. Jour. Geol. Soc. India, v.91, pp.679–686.

    Article  Google Scholar 

  • Kumar, P., & Joshi, V. (2015) Characterization of hydro geological behavior of the upper watershed of River Subarnarekha through morphometric analysis using remote sensing and GIS approach. Internat. Jour. Environ. Sci., v.6(4)), DOI:https://doi.org/10.6088/ijes.6049.

  • Kusre B. C. (2016) Morphometric Analysis of Diyung Watershed in Northeast India using GIS Technique for Flood Management. Jour. Geol. Soc. India, v.87, pp.361–369.

    Article  Google Scholar 

  • Lara, G. Perucca, L. and Rothis M. (2018) Morphometric, Geomorphologic and Flood Hazard Analysis of an Arid Mountain River Basin, Central Pre-Andes of Argentina. Southwestern South America. Geogr. Fis. Dinam. Quat., v.41, pp.83–97. DOI https://doi.org/10.4461/GFDQ.2018.41.6

    Google Scholar 

  • Li, L., Yang, J., and Wu J. (2019) A Method of Watershed Delineation for Flat Terrain Using Sentinel-2A Imagery and DEM: A Case Study of the Taihu Basin. ISPRS Internat. Jour. Geo-Inf., v.8, pp.528; DOI:https://doi.org/10.3390/ijgi8120528.

    Article  Google Scholar 

  • Ma, Y., Huang, H., Nanson, G. C., Li, Y., Yao, W. (2012). Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River. Geomorphology, v.147–148, pp.35–48.

    Article  Google Scholar 

  • Macfarlane, M. and Mitchell, P., (2003) River mining: environmental and social impacts [online]. Department for International Development Project Report. Available from: http://www.bgs.ac.uk/research/international/DFID-KAR/ADD011_col.pdf [Accessed 20 June 2014].

  • Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P. (2011) Morphometric evaluation of Papanasam & Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environ. Earth Sci., v.64(2), pp.373–381. DOI:https://doi.org/10.1007/s12665-010-0860-4.

    Article  Google Scholar 

  • Mahala A. (2019) The signifcance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho climatic settings. Appl. Water Sci., v.10, pp.33. DOI: https://doi.org/10.1007/s13201-019-1118-2

    Article  Google Scholar 

  • Mahmood A. (1977) Statistical Methods in Geographical Studies. Rajesh Publications, New Delhi.

    Google Scholar 

  • Mann, H.B. (1945): Nonparametric tests against trend. Econometrica, v.13, pp.245–259.

    Article  Google Scholar 

  • Mather, P. and Doornkamp, J. (1970) Multivariate Analysis in Geography with Particular Reference to Drainage-Basin Morphometry. Trans. Instit. British Geographers, v.51, pp.163–187. DOI:https://doi.org/10.2307/621768.

    Article  Google Scholar 

  • Mekonnen, M.M., Hoekstra, A.Y., (2016) Four billion people facing severe water scarcity. Sci. Adv. v.2, DOI:https://doi.org/10.1126/sciadv.1500323e1500323.

  • Meybeck M. (2003) Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philos. Trans. Roy. Soc. B Biol. Sci. v.358(1440), pp.1935–1955.

    Article  Google Scholar 

  • Miller, V.C. (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area, Virginia and Tennesse, Project NR 389–042, Technical Report No.3, University of Geology, Columbia University, New York.

    Google Scholar 

  • Mishra, S.K. and Singh, V. P. (1999) Another look at SCS-CN method. Jour. Hydrol. Eng., v.4(3), pp.257–264

    Article  Google Scholar 

  • Mishra, S.K., Tyagi, J.V., Singh, V.P., Singh R. (2006) SCS-CN-based modeling of sediment yield. Jour. Hydrol., v.324, pp.301–322.

    Article  Google Scholar 

  • Mitra, S. and Singh A. (2018) Assessment of environmental flow requirements of damodar river basins by using flow duration indices method — a case study. Internat. Jour. Hydrol., v.2(3), pp.281–283.

    Google Scholar 

  • Mockus, V. (1949) Estimation of total (and peak rates of) surface runoff for individual storms. Exhibit A of Appendix B, Interim Survey Report, Grand (Neosho) River Watershed, USDA Soil Conservation Service.

  • Montgomery, D.R. and Dietrich, W.E. (1989) Source areas, drainage density and channel initiation; Water Resour. Res., v.25, pp.1907–1918.

    Google Scholar 

  • Montgomery, D.R. and Dietrich, W.E. (1992) Channel initiation and the problem of landscape scale; Science, v.255, pp.826–830.

    Article  Google Scholar 

  • Morisawa M. (1985) Rivers: Forms and Process. Longman Inc., New York.

    Google Scholar 

  • Mueller, J. E. (1968) An introduction to the hydrautic and topographic sinuosity indexes, Annals Assoc. Amer. Geographers, v.58(2), pp.371–385.

    Article  Google Scholar 

  • Mukhopadhyay, M., Verma, R.K. and Ashraf, M.H. (1986) Gravity Field and Structures of the Rajmahal Hills: Example of the Paleo-Mesozoic Continental Margin in Eastern India. Tectonophysics, v. 131; pp.353–367.

    Article  Google Scholar 

  • Natural Resources Conservation Service, USDA (2004a) Estimation of Direct Runoff from Storm Rainfall. Chapter 10, Part 630, National Engineering Handbook.

  • Natural Resources Conservation Service, USDA (2004b.) Hydrologic Soil-Cover Complexes. Chapter 9, Part 630, National Engineering Handbook.

  • Nidhi, K., Chowdary, V. M., Tiwari, K. N., Shinde, V., and Dadhwal, V.K. (2016): Assessment of Surface Water Potential using Morphometry and Curve Number based Approaches, Geocarto Internat., DOI: https://doi.org/10.1080/10106049.2016.1195889.

  • Nilsson C., Reidy C. A., Dynesius M., Revenga C. (2005) Fragmentation and flow regulation of the world’s large river systems. Science, v.08(5720), pp.405–408

    Article  Google Scholar 

  • Nir, D. (1957) The ratio of relative and absolute altitude of Mt. Carmel. Geogr. Rev., v.27, pp.564–569.

    Article  Google Scholar 

  • Ogrosky, H.O. (1956) Service objectives in the field of hydrology, (unpublished). Soil Conservation Service, Lincoln, NE, 5p.

  • Ozdemir H. and Bird D. (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ. Geol., v.56, pp.1405–1415. DOI https://doi.org/10.1007/s00254-008-1235-y

    Article  Google Scholar 

  • Padmalal, D., Maya K., Sreebha S. and Sreeja R. (2008) Environmental effects of river sand mining: a case from the river catchments of Vembanad lake, Southwest coast of India. Environ. Geol., v.54, pp.879–889

    Article  Google Scholar 

  • Panda, B. Venkatesh, M. Kumar, B. Anshumali (2018) A GIS-based Approach in Drainage and Morphometric Analysis of Ken River Basin and Sub-basins, Central India. Jour. Geol. Soc. India, v.93, pp.75–84.

    Article  Google Scholar 

  • Pandey, P.K. and Das S.S. (2016) Morphometric analysis of Usri River basin, Chhotanagpur Plateau, India, using remote sensing and GIS. Arab Jour. Geosci., v.9, pp.240. DOI:https://doi.org/10.1007/s12517-015-2287-4

    Article  Google Scholar 

  • Patil, J.P., Sarangi, A., Singh, A.K., Ahmed, T., (2008) Evaluation of modified CN methods for watershed runoff estimation using a GIS based interface. Biosyst Eng., v.100, pp.137–146.

    Article  Google Scholar 

  • Patton, P. C. and Baker, V. R. (1976) Morphometry and Floods in Small Drainage Basins Subject to Diverse Hydrogeomorphic Controls. Water Resour. Res., v. 12(5), pp.941–952.

    Article  Google Scholar 

  • Pérez-Peña, J. V. Azanon, J. M. Booth-Rea, G. Azor, A. and Delgado J. (2009) Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Jour. Geophys. Res., v.14, F02018, doi:https://doi.org/10.1029/2008JF001092

    Google Scholar 

  • Petts, G. E. (1984) Sedimentation Within a Regulated River. Earth Surface Processes and Landforms, v.9, pp.125–134.

    Article  Google Scholar 

  • Poesen, J. (2017) Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, v. 43(1), pp.64–84. doi:https://doi.org/10.1002/esp.4250.

    Article  Google Scholar 

  • Pramanik, S. K. and Rao, K. N. (1952) Hydrometeorology of the Damodar catchment. Indian Jour. Meteorol, Geophys., v.3(2), pp.429–431.

    Google Scholar 

  • Prasannakumar, V., Vijith, H., & Geetha, N. (2011). Terrain evaluat assessment of geomorphometric parameters using DEM and G two major sub-watersheds in Attapady, South India. Arabian Geosci., DOI:https://doi.org/10.1007/s12517-011-0408-2.

  • Rahman M. M., Rahman M. R. and Asaduzzaman M. (2010) Establishment of Dams and Embankments on Frontier River of North East Part of India: Impact on North-Western Region of Bangladesh. Jour. Sci. Found., v.8(1&2), pp.1–12.

    Google Scholar 

  • Rai, P. K., Chandel, R. S., Mishra, V. N. and Singh, P. (2018) Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Appl. Water Sci., v.8(15). DOI:https://doi.org/10.1007/s13201-018-0660-7

  • Ram Babu, Dhyani BL, Kumar N (2004) Assessment of erodibility status and refined Iso- Erodent Map of India. Indian Jour. Soil Conserv., v.32(2), pp.171–177.

    Google Scholar 

  • Rinaldi, M. (2003) Recent Channel Adjustments in Alluvial Rivers of Tuscany, Central Italy. Earth Surf. Process. Landforms, v.28, pp.587–608.

    Article  Google Scholar 

  • Rinaldi, M., Wyzga, B., and Surian, N. (2005) Sediment Mining In Alluvial Channels: Physical Effects And Management Perspectives. River Res. Applic., v.21, pp.805–828.

    Article  Google Scholar 

  • Rockstrom, J., W. Steffen, K. Noone, A. Persson, F. S. Chapin, III, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. Schellnhuber, B. Nykvist, C. A. De Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sorlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. Foley. (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, v.14(2), A.32. http://www.ecologyandsociety.org/vol14/iss2/art32/.

    Article  Google Scholar 

  • Romshoo, S. A., Bhat S. A. and Rashid I. (2012) Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin. Earth Syst. Sci., v. 121(3), pp.659–686.

    Article  Google Scholar 

  • Romshoo, S. A., Bhat, S. A. and Rashid, I. (2012) Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus basin. Jour. Earth Syst. Sci., v.121, pp.659–686.

    Article  Google Scholar 

  • Rudra K. (2001) The flood in West Bengal: September 2000. N.A.P.M., Kolkata, West Bengal.

    Google Scholar 

  • Rudra, K. (2002). Floods in West Bengal, 2000- Causes and Consequences. In S. Basu (Ed.), Changing Environmental Scenario (pp. 326–347). Kolkata: acb publications

    Google Scholar 

  • Rudra, K. (2010) Banglar Nadikatha. Kolkata: Sahitya Samsad.

    Google Scholar 

  • Sadhasivam, N. Bhardwaj, A. Pourghasemi, H. R. and Kamaraj N. P. (2020) Morphometric attributes based soil erosion susceptibility mapping in Dnyanganga watershed of India using individual and ensemble models. Environ. Earth Sci., v.79, pp.360. DOI:https://doi.org/10.1007/s12665-020-09102-3

    Article  Google Scholar 

  • Sadoffa, C., Harshadeep, N. R., Blackmore, D., Wuc, X., O’Donnella, A., Jeuland, M. Lee S., Whittington, D. (2013) Ten fundamental questions for water resources development in the Ganges: myths and realities. Water Policy, v.15, pp.147–164.

    Article  Google Scholar 

  • Sah, R. K., and Das A. K. (2017) Overcoming Source Limitations in Drainage Delineation by Combining the Streams of Toposheet and DEM in River Morphometric Studies. Jour. Geol. Soc. India, v.90, pp.183–186

    Article  Google Scholar 

  • Sahoo, A. K., Sarkar, D., Singh, S. K., Obi Reddy, G. P., Dhyani, B. L., Mishra, P. K. and Sharda V. N. (2014) Soil Erosion Jharkhand. NBSS Publ. No. 159. NBSS & LUP (ICAR), Nagpur.

    Google Scholar 

  • Sajadi, P. et. al. (2018) Analysis of Drainage Morphometry and Tectonic Activity in the Dehgolan Basin Kurdistan, Iran, Using Remote Sensing and Geographic Information System. Geospatial Applications for Natural Resources Management (Edited by Singh, C. K.).

  • Sarkar, B. C. (2010–2011) A GIS Approach to Morphometric Analysis of Damodar River Basin and Groundwater Potentiality Mapping in Jharia Coalfield. Bhu Jal News (Quart. Jour. CGWB), Volume 25, No. 3&4 July–Dec.2010 & Vol. 26, No. 1–4, Jan. — Dec. 2011(Combined).

  • Sarma, J. N. Acharjee, S. and Murgante B. (2015) Morphotectonic Study of the Brahmaputra Basin using Geoinformatics. Jour. Geol. Soc. India, v.86, pp.324–330. DOI:https://doi.org/10.1007/s12594-015-0318-0.

    Article  Google Scholar 

  • Schumm, S. A. (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Amer., v.67, pp.597–646.

    Article  Google Scholar 

  • Selvan, M. T., Ahmad, S., & Rashid, S. M. (2011). Analysis of the geomorphometric parameters in high altitude Glacierised terrain using SRTM DEM data in central Himalaya, India. ARPN Jour. Sci. Tech., v.1(1), pp.22–27.

    Google Scholar 

  • Sen, A. K. (1987) Water Balance and Landuse Planning: A Case Study of the Upper Damodar Basin. Unpublished PhD. Thesis. The University of Burdwan. West Bengal.

  • Sen, P. K. (1968): Estimates of the regression coefficient based on Kendall’s tau. Jour. Amer. Stat. Assoc., v.63, pp.1379–1389.

    Article  Google Scholar 

  • Sen, P.K. (1993) Geomorphological analysis of Drainage Basins — An Introduction to Morphometry and Hydrological parameters. The University of Burdwan, Burdwan, West Bengal.

    Google Scholar 

  • Shen, X.; Anagnostou, E.N.; Mei, Y.; Hong, Y. (2017) A global distributed basin morphometric dataset. Sci. Data. v.4, 160124.

    Article  Google Scholar 

  • Sherman, L.K. (1942) The unit hydrograph method. In: Physics of the Earth, IX, Hydrology, O.E. Meinzer, (Ed.), National Research Council, McGraw-Hill, NY.

    Google Scholar 

  • Shinde V., Sharma, A., Tiwari, K.N., and Singh M. (2011) Quantitative Determination of Soil Erosion and Prioritization of Micro-Watersheds Using Remote Sensing and GIS. Jour. Indian Soc. Remote Sens., v.39(2), pp.181–192. DOI: https://doi.org/10.1007/s12524-011-0064-8.

    Article  Google Scholar 

  • Shinde, V., Sharma, A., Tiwari, K. N., and Singh, M. (2011) Quantitative Determination of Soil Erosion and Prioritization of Micro-Watersheds Using Remote Sensing and GIS. Jour. Indian Soc. Remote Sens, v.39(2), pp.181–192.

    Article  Google Scholar 

  • Singh, D.S. and Awasthi, A. (2011) Implication of Drainage Basin Parameters of Chhoti Gandak River, Ganga Plain, India. Jour. Geol. Soc. India, v.78, pp.370–378.

    Article  Google Scholar 

  • Singh, D.S. and Awasthi, A. (2011) Natural hazards in the Ghaghara River area, Ganga, Plain, India, Natural Hazards, v.57, pp.213–225.

    Article  Google Scholar 

  • Singh, D.S., Prajapati, S.K., Singh, P., Singh, K. and Kumar, D. (2015) Climatically induced levee break and flood risk management of the Gorakhpur region, Rapti River Basin, Ganga Plain, India. Jour. Geol. Soc. India, v.85, pp.79–86.

    Article  Google Scholar 

  • Singh, P. Gupta, A. Singh, M. (2014) Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques, Egypt. Jour. Remote Sensing Space Sci., DOI:https://doi.org/10.1016/j.ejrs.2014.09.003

  • Singh, S. and Singh, M.C. (1997). Morphometric Analysis of Kanhar River Basin. National Geographical Jour., V.43(1), Pp. 31–43.

    Google Scholar 

  • Singh, S., & Kanhaiya, S. (2015). Morphometry of the Barakar River Basin, India: A remote sensing and GIS approach. Internat. Jour. Curr. Res., v.7(7), pp.17948–17955.

    Google Scholar 

  • Singhvi, A. K. and Krishnan R. (2014) Past and the Present Climate of India. in V.S. Kale (Ed.), Landscapes and Landforms of India, World Geomorphological Landscapes, DOI: https://doi.org/10.1007/978-94-017-8029-2_2.

  • Sinha R., Jain V. and Tandon S. K. (2013) River Systems and River Science in India: Major Drivers and Challenges in Sinha R. and Ravindra R eds. Earth System Processes and Disaster Management. DOI https://doi.org/10.1007/978-3-642-28845-6. pp 67–90. Springer-Verlag Berlin Heidelberg.

    Chapter  Google Scholar 

  • Smith, K. G. (1950) Standards for grading textures of erosional topography. Amer. Jour. Sci., v.248, pp.655–688

    Article  Google Scholar 

  • Soulis., K. X. and Valiantzas J. D. (2012) SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds — the two-CN system approach. Hydrol. Earth Syst. Sci., v.16, pp.1001–1015. DOI:https://doi.org/10.5194/hess-16-1001-2012.

    Article  Google Scholar 

  • Sreebha S. and Padmalal D. (2011) Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study. Environ. Manag., v. 47, pp.130–140. DOI https://doi.org/10.1007/s00267-010-9571-6.

    Article  Google Scholar 

  • Sreedevi, P.D., Subrahmanyam, K. and Ahmed, S. (2004) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol., v.47, pp.412–420.

    Article  Google Scholar 

  • Stepinski, T.F.; Collier, M.L. (2004) Extraction of Martian valley networks from digital topography. Jour. Geophys. Res. Planets, v.109.

  • Strahler, A. N. (1952) Dynamic Basis of Geomorphology. Geol. Soc. Amer. Bull., v.63(11), pp.1117–1142.

    Article  Google Scholar 

  • Strahler, A. N. (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38: pp.913–920.

    Article  Google Scholar 

  • Strahler, A.N. (1964) Quantitative geomorphology of drainage basins and channel networks, In: VT Chow (Ed.), Handbook of Applied Hydrology. McGraw Hill Book Company, New York, Section, pp.4–11

    Google Scholar 

  • Surian N. and Rinaldi M (2004) Channel adjustments in response to human alteration of sediment fluxes: examples from Italian rivers. Sediment Transfer through the Fluvial System(Proceedings of a symposium held in Moscow, August 2004). IAHS Publ., no.288.

  • Tailor, D. and Shrimali, N. J. (2016) Surface Runoff Estimation by SCS Curve Number Method Using GIS for Rupen-Khan Watershed, Mehsana District, Gujarat. Jour. Indian Water Resour. Soc., v.36(4), pp.1–5.

    Google Scholar 

  • The World Bank (2005) India’s Water Economy—Bracing for a Turbulent Future. Washington, DC: The World Bank.

    Google Scholar 

  • Thomas J, Joseph S, Thrivikramaji KP (2010) Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. Internat. Jour. Digit Earth, v.3(2), pp.135–156.

    Article  Google Scholar 

  • Valdiya K. S. (2016) The Making of India: Geodynamic Evolution. DOI https://doi.org/10.1007/978-3-319-25029-8. Springer International Publishing Switzerland.

    Book  Google Scholar 

  • Verma, R. K., Murthy, S., Verma, S. and Mishra S. K. (2016) Design flow duration curves for environmental flows estimation in Damodar River Basin, India. Appl. Water Sci. DOI https://doi.org/10.1007/s13201-016-0486-0

  • Verstappen, H. (1983) The applied geomorphology. International Institute for Aerial Survey and Earth Science (I.T.C), Enschede, The Netherlands, Amsterdam, Oxford, New York.

    Google Scholar 

  • Vogal, R.M., Fennessey, N.M. (1994) Flow duration curves. I. A new interpretation and confidence intervals. Jour. Water Resour. Plan. Manag. v.120(4), pp.485–504.

    Article  Google Scholar 

  • Voorduin, W. L. (1945) Preliminary Memorandum on the Unified Development of the Damodar River. Central Technical Power Board.

  • Vörösmarty C.J., Meybeck M., Fekete B., Sharma K., Green P., Syvitski J. P. (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, v.39(1–2), pp.169–190.

    Article  Google Scholar 

  • Wan, Z., Hook, S., Hulley, G. (2015) MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2020-09-08 from https://doi.org/10.5067/MODIS/MOD11C3.006

  • Watershed Atlas of India (2012) Soil and Land Use Survey of India, Department of Agriculture & Cooperation, Ministry of Agriculture, Government of India

  • Weibull, W (1939): A statistical theory of the strength of materials, Ingeniors Vetenskaps Akademien (The Royal Swedish Institute for Engineering Research), Proceedings No.51: pp.5–45.

  • Wentworth, C. K. (1930) A Simplified method of determining the average slope of land surface. Amer. Jour. Sci., Series 5, v.20, pp.184–194. DOI:https://doi.org/10.2475/ajs.s5-20.117.184

    Article  Google Scholar 

  • Williams, G. P., and M. G. Wolman (1984) Downstream effects of damson alluvial rivers, USGS Prof. Pap. 1286, 83p.

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion lossesa guide to conservation planning. Agricultural Handbook No. 537, USDA.

  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph from farmland and construction sites. Journal of Soil and Water Conservation, v.26, pp.189–193.

    Google Scholar 

  • Wood, W. F. and Snell, J. B. (1960) A quantitative system for classifying landforms: U.S.Army Natick Lab., Tech. Rep. EP-124, Natick, Massachusetts.

Download references

Acknowledgments

The authors are sincerely grateful to Department of Geography of The University of Burdwan, for providing the necessary support to do this work. Three anonymous reviewers and publication team of the journal are duly acknowledged for improving and bringing the manuscript to this stage. This paper forms a part of Prasanta Kumar Ghosh’s and Ritendu Mukhopadhyay’s doctoral research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prasanta Kumar Ghosh, Ritendu Mukhopadhyay or Narayan Chandra Jana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P.K., Mukhopadhyay, R. & Jana, N.C. Quantitative Analysis of Drainage Basin Parameters towards better Management of Damodar River, Eastern India. J Geol Soc India 97, 711–734 (2021). https://doi.org/10.1007/s12594-021-1753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1753-8

Navigation