Skip to main content
Log in

Fossil Wood of Subfamily Detarioideae (family Fabaceae) from the Paleogene of the Indian Subcontinent: Origin and Palaeo-dispersal Pathways

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

A new fossil wood of Hopeoxylon i.e. H. umarsarensis sp. nov. showing close resemblance with the modern wood of Sindora/Copaifera of the subfamily Detarioideae (family Fabaceae) is described from the Umarsar lignite mine of Kutch basin, Gujarat that belongs to the Naredi Formation of the early Eocene age. Detarioideae is one of the reinstated subfamilies of the Fabaceae with diversity much higher in tropical Africa than in South America or Asia. The relics of this subfamily are known from the Paleocene onwards from various horizons of America, Africa, Europe, India and Southeast Asia. This is the oldest fossil record of the genus Sindora/Copaifera which contributes towards the understanding of the origin and palaeo-dispersal pathways of this early-diverging subfamily within the early branching Fabaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adegoke, O.S., Jan Du Chene, R.E., Agumanu, A.E. and Ajayi, P.O. (1978) Paleontology and age of the Kerri-Kerri formation, Nigeria. Rev. Espanola Micro. Paleontol., v.2, pp.267–283.

    Google Scholar 

  • Agrawal, S., Verma, P., Rao, M.R., Garg, R., Kapur, V.V. and Bajpai, S. (2017) Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. Jour. Asian Earth Sci., v.146, pp. 296–303.

    Article  Google Scholar 

  • Awasthi, N. (1977) Revsion of Hopeoxylon indicum Navale and Shoreoxylon speciosum Navale from the Cuddalore Series near Pondicherry. Palaeobotanist, v.24, pp.102–107.

    Google Scholar 

  • Barron, E.J. and Harrison, C.G.A. (1980) An analysis of past plate motions in South Atlantic and Indian Oceans. In: Davies, P., Runcorn, S.K. (Eds.), Mechanisms of continental drift and plate tectonics, Academic Press, London, UK.

    Google Scholar 

  • Bera, S., Parua, D.K. and Sen, I. (2001) Fossil wood resembling Sindora Miq. from the Neogene of West Bengal, India. Indian Jour. Earth Sci., v.28, pp.26–31.

    Google Scholar 

  • Boureau, E. and Louvet, P. (1975) Etude Paléoxylologique du Sahara (VI). Sur une forme nouvelle de Sterculioxylon (Nicolia) aegyptiacum (Unger) Kräusel, des couches Post-Eocene du Tibesti. Bull. Mus. 2 Sér. 21, pp.776-787.

  • Briggs, J.C. (1989) The historic biogeography of India: isolation or contact? Syst. Biol., v.38, pp.322–332.

    Google Scholar 

  • Bruneau, F., Herendeen, P., Klitgaan, B. and Lewis, G. (2001) Phylogenetic relationship in the Caesalpinioideae (Leguminosae) as inferred from the chloroplast trnL intron sequences. Syst. Bot., v.26, pp.487–514.

    Google Scholar 

  • Bruneau, A., Mercure, M., Lewis, G.P. and Herendeen, P.S. (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany, v.86, pp.697–718.

    Article  Google Scholar 

  • Chatterjee, H.G. and Scotese, C.R. (1999) The breakup of Gondwana and the evolution and biogeography of the Indian plate. Proc. Indian Natl. Sci. Acad., v.65A, pp.397–425.

    Google Scholar 

  • Chatterjee, S. and Scotese, C.R. (2010) The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period. In: Bandyopadhyay, S. (Ed.), New Aspects of Mesozoic Biodiversity, Lecture Notes in Earth Science, Springer, Berlin, Heidelberg, 132, pp.105–126.

    Chapter  Google Scholar 

  • Chatterjee, S., Goswami, A. and Scotese, C. (2013) The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res., v.23, pp.238–267.

    Article  Google Scholar 

  • Datta-Roy, A. and Karanth, K.P. (2009) The Out-of-India hypothesis: What do molecules suggest?. Jour. Biosci., v.34(5), pp.687–697.

    Article  Google Scholar 

  • Estrella, M., Forest, F., Wieringa, J.J., Fougere-Danezan, M. and Bruneau, A. (2017) Insights on the evolutionary origin of Detarioideae, a clade of ecologically dominant tropical African trees. New Phytologist, v.214, pp.1722–1735.

    Article  Google Scholar 

  • Estrella, M., Forest, F., Kitgard, B., Lewis, G.P., Mackinder, B.A., de Queiroz, L.P., Wieringa, J.J. and Bruneau, A. (2018) A new phylogeny-based tribal classification of subfamily Detarioideae, an early branching clade of florally diverse tropical arborescent legumes. Scientific Reports 8, Article number: 6884.

  • Gasson, P., Trafford, C. and Matthews, B. (2003) Wood anatomy of Caesalpinioideae. In: Klitgaard, B.B. and Bruneau, A. (Eds.), Advances in Legume Systematics, v.10, pp. 63–93, Royal Botanic Gardens, Kew.

    Google Scholar 

  • Hass, H. and Rowe, N.P. (1999) Thin sections and wafering. In: Jones, T.P. and Rowe, N.P. (Eds.), Fossil plants and spores: modern techniques, Geological Society, London, pp.76–81.

    Google Scholar 

  • Herendeen, P.S. (2000) Structural evolution in Caesalpinioideae. In: Herendeen, P.S. and Bruneau, A. (Eds.), Advances in Legumes Systematics, v.9, Royal Botanic Gardens, Kew, pp. 45–64.

    Google Scholar 

  • Herendeen, P.S., Lewis, G.P. and Bruneau, A. (2003) Floral morphology in Caesalpinioid legumes: testing the monophyly of the “Umtiza Clade”. Int. Jour. Plant Sci., v.164, pp.393–407.

    Article  Google Scholar 

  • Hu, X., Garzanti, E., Wang, J., Huang, W., An, W. and Webb, A. (2016) The timing of India-Asia collision onset—facts, theories, controversies. Earth-Sci. Rev., v.160, pp.264–299.

    Article  Google Scholar 

  • Hueber, F.M. and Langenheim, J. (1986) Dominican amber tree had African ancestors. Geotimes, v.31, pp.8–10.

    Google Scholar 

  • IAWA Committee (1989) IAWA List of microscopic features for hardwood identification. IAWA Bull. n. s., v.10, pp.219–332.

    Article  Google Scholar 

  • Ilic, J. (1991) CSIRO atlas of hard woods. Springer, Berlin.

    Google Scholar 

  • Jaegger, J.J., Courtillot, V. and Tapponnier, P. (1989) Palaeontological view of the ages of the Deccan Traps, the Cretaceous-Tertiary boundary, and the India-Asia collision. Geology, v.17, pp.316–319.

    Article  Google Scholar 

  • Krause, D.W., Prasad, G.V.R., von Koenigswald, W., Sahni, A. and Grine, F. (1997) Cosmopolitan among Gondwana Late Cretaceous mammals. Nature, v.390, pp.504–507.

    Article  Google Scholar 

  • Kribs, D.A. (1959) Commercial foreign woods on the American market. Pennsylvania State University, Pennsylvania.

    Google Scholar 

  • Lakhanpal, R.N. and Guleria, J.S. (1981) Leaf- impressions from the Eocene of Kachchh, western India. Palaeobotanist, v.28–29, pp.353–373.

    Google Scholar 

  • Lalitha, C. and Prakash, U. (1980) Fossil wood of Sindora from the Tertiary of Assam with a critical analysis of anatomically allied forms. Geophytol., v.10, pp.174–187.

    Google Scholar 

  • Lavin, M., Thulin, M., Labat, J.N. and Pennington, R.T. (2000) Africa, the odd man out: molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise. Syst. Bot. v.25, pp.449–467.

    Article  Google Scholar 

  • Lavin, M., Schrire, B.P., Lewis, G., Pennington, R.T., Delgado-Salinas, A., Thulin, M., Hughes, C.E., Matos, A.B. and Wojciechowski, M.F. (2004) Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Phil. Trans. Roy. Soc. B, v.359, pp.1509–1522.

    Article  Google Scholar 

  • Lemoigne, Y., Beauchamp, J. and Samuel, E. (1974) Etude paléobotanique des dépôts volcaniques d’âge tertiaire des bordures est et ouest du systéme des rifts éthiopiens. Geobios, v.7, pp.267- 288.

    Article  Google Scholar 

  • Lieberman, B.S. (2000) Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic Press, New York, 208p.

    Book  Google Scholar 

  • LPWG The Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon, v.66(1), pp.44–77.

    Article  Google Scholar 

  • Mathews, R.P., Singh, B.D., Singh, H., Singh, V.P. and Singh A. (2018) Characterization of Panandhro Lignite Deposits (Kachchh Basin), western India: Results from the Bulk Geochemical and Palynofloral Compositions. Jour. Geol. Soc. India, v.91, pp.281–289.

    Article  Google Scholar 

  • Mehrotra, R.C., Liu, Xiu-Qun, Li, Cheng-Sen, Wang, Yu-Fei and Chauhan, M.S. (2005) Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Rev. Palaeobot. Palynol., v.135, pp.145–163.

    Article  Google Scholar 

  • Metcalfe, C.R. and Chalk, L. (1950) Anatomy of the dicotyledons, 1 and 2. Clarendon Press, Oxford.

    Google Scholar 

  • Molnar, P. and Stock, J.M. (2009) Slowing of India’s convergence with Eurasiasince 20 Ma and its implications for Tibetan mantle, dynamics. Tectonics, v.28, TC3001.

    Article  Google Scholar 

  • Morley, R.J. (2000) Origin and Evolution of Tropical Rain Forests. JohnWiley & Sons, West Sussex, UK.

    Google Scholar 

  • Morley, R.J. (2003) Interplate dispersal paths for megathermal angiosperms. Persp. Plant Ecol. Evol. Syst., v.6, pp.5–20.

    Article  Google Scholar 

  • Moya, E. and Brea, M. (2015) Legume fossil woods from the Arroyo Feliciano Formation (Late Pleistocene, Northeastern Argentina): paleobiogeographic implications. Ameghiniana, v.52, pp.558–573.

    Article  Google Scholar 

  • Mukhopadhyay, S. and Shome, S. (1996) Depositional environment and basin development during early Palaeogene Lignite Deposition, Western Kutch, Gujarat. Jour. Geol. Soc. India, v.47, pp.579–592.

    Google Scholar 

  • Müller-Stoll, W.R. and Mädel, E. (1967) Die fossilen Leguminosen Hölzer. Eine Revision der mit Leguminosen verglichenen fossilen Hölzer und Beschreibung ältere und neuer Arten. Palaeontographica B, v.119, 95–174.

    Google Scholar 

  • Normand, D. (1950) Atlas de Bois de la Cote d’Ivoire, 1. Centre Technique for Tropical Forestier, Nogent-sur-Marne.

    Google Scholar 

  • Pan, A.D., Jacobs, B.F. and Herendeen, P.S. (2010) Detarieae sensu lato (Fabaceae) from the Late Oligocene (27.23 Ma) Guang river flora of northwestern Ethiopia. Bot. Jour. Linn. Soc., v.163, pp.44–54.

    Article  Google Scholar 

  • Poinar, G.O. and Poinar, R. (1999) The Amber Forest: a reconstruction of a vanished world. Princeton University Press, New Jersey, p.292.

    Google Scholar 

  • Poinar, G.O. and Chambers, K.L. (2015) Prioria dominicana sp. nov. (Fabaceae: Caesalpinioideae), a fossil flower in mid-Tertiary Dominican Amber. Jour. Bot. Res. Inst. Tex., v.9, 129–134.

    Google Scholar 

  • Prakash, U. (1981) Further occurrence of fossil woods from the Lower Siwalik beds of Uttar Pradesh, India. Palaeobotanist, v.28–29, pp.374–388.

    Google Scholar 

  • Prakash, U., Mishra, V.P. and Srivastava, G.P. (1988) Fossil wood resembling Sindora from the Tertiary of Palamau District, Bihar. Rec. Geol. Surv. India, v.118, pp.69–73.

    Google Scholar 

  • Prive-Gill, C., Thomas, H. and Lebret, P. (1999) Fossil wood of Sindora (Leguminosae, Caesalpiniaceae) from the Oligo-Miocene of Saudi Arabia: Paleobiogeographical considerations. Rev. Palaeobot. Palynol., v.107, pp.191–199.

    Article  Google Scholar 

  • Ramdhani, S., Cowling, R.M. and Barker, N.P. (2010) Phylogeography of Schotia (Fabaceae): recent evolutionary processes in an ancient thicket biome lineage. Int. Jour. Plant Sci., v.171, pp.626–640.

    Article  Google Scholar 

  • Raven, P.H. and Axelrod, D.I. (1974) Angiosperm biogeography and past continental movements. Ann. Miss. Bot. Gard., v.61, pp.539–673.

    Article  Google Scholar 

  • Roy, A.B. and Jakhar, S.R. (2002) Geology of Rajasthan (Northwest India): Precambrian to Recent. Scientific Publishers, India, 412 p.

    Google Scholar 

  • Sahni, A. and Bajpai, S. (1988) Cretaceous-Tertiary boundary events: the fossils vertebrate, palaeomagnetic and radiometric evidence from peninsular India. Jour. Geol. Soc. India, v.32, pp.382–396.

    Google Scholar 

  • Saraswati, P.K. and Banerjee, R.K. (1984) Lithostratigraphic classification of the Tertiary sequence of northwestern Kutch. In: Badve, R.M., Borkar, V.D., Ghare, M.A. and Rajshekhar, C.S. (Eds.), Proc. X Indian Colloq. Micropalaeont. Stratigr., Pune, pp.369-376.

  • Scotese, C.R. (2004) A continental drift flipbook. Jour. Geol., v.112, pp.729–741.

    Article  Google Scholar 

  • Scotese, C.R. and Golonka, J. (1992) Paleogeographic Atlas, PALEOMAP Progress Report 20–0692. Department of Geology, University of Texas, Arlington, 34p.

    Google Scholar 

  • Shukla, A., and Mehrotra, R. C. (2018). A new fossil wood from the highly diverse early Eocene equatorial forest of Gujarat (western India). Palaeoworld, v.27(3), pp.392–398.

    Article  Google Scholar 

  • Simon, M.F., Grether, R., De Queiroz, L.P., Skema, C., Pennington, R.T. and Hughes, C.E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Nat. Acad. Sci., USA, v.106, pp.20359–20364.

    Article  Google Scholar 

  • Smith, A.B. (1988) Late Paleozoic biogeography of East Asia and palaeontological constraints on plate tectonic reconstruction. Phil. Trans. R. Soc. London, 326A, pp.189–227.

    Article  Google Scholar 

  • Steyermark, J., Berry, P., Holst, B. and Yatskievych, K. (1998) Flora of the Venezuelan Guayana, vol. 4: Caesalpiniaceae — Ericaceae. Missouri Botanical Garden, St. Louis, Missouri.

    Google Scholar 

  • Wang, C.S., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., Ran, B. and Meng, J. (2014) Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonics, v.621, pp.1–43.

    Google Scholar 

  • Wheeler, E.A. (2011) InsideWood — a web resource for hardwood anatomy. IAWA J., v.32, 199–211.

    Article  Google Scholar 

  • Yahara, T., Javadi, F., Onoda, Y., de Queiroz, L.P., Faith, D.P., Prado, D.E., Akasaka, M., Kadoya, T., Ishihama, F. and Davies, S., et al. (2013) Global legume diversity assessment: concepts, key indicators, and strategies. Taxon, v.62, pp.249–266.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, Birbal Sahni Institute of Palaeosciences, Lucknow for the permission to publish this work. Thanks are also due to Mr. H.O. Selvanayagam, General Manager of Umarsar liginte mine (GMDC), Ahmadabad for his kind support during the collection of the fossil material. H.S. expresses sincere gratitude to the Science and Engineering Research Board (SERB), New Delhi for providing the DST sponsored project for financial support (Project No. EEQ/2016/000112). We are grateful to the anonymous reviewer for his fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anumeha Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Singh, H. & Mehrotra, R.C. Fossil Wood of Subfamily Detarioideae (family Fabaceae) from the Paleogene of the Indian Subcontinent: Origin and Palaeo-dispersal Pathways. J Geol Soc India 94, 411–415 (2019). https://doi.org/10.1007/s12594-019-1329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1329-z

Navigation