Skip to main content
Log in

On Granites

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Granites are important components of the Earth’s continental crust and represent the net effect of thermochemical processes that operate during partial melting, magma extraction, ascent, emplacement and crystallization. Compositional and isotopic variations in granites arise from source heterogeneities, mixing in the source, and peritectic mineral entrainment as well as crystal fractionation and assimilation. Fluid-absent hydrate-breakdown melting reactions that accompany high-temperature metamorphism are responsible for differentiating the continental crust into a granitic upper portion and a residual lower portion. In some cases, melting can proceed through the influx of a hydrous fluid, although the significance of this on the long-term compositional differentiation of the continental crust is debated. Accessory minerals in granites are important chronometers and play a primary role in transferring the radiogenic isotope signature of sources to granites. Magma ascent and emplacement are guided by deformation and pluton construction is expected to be incremental with pluton heterogeneity being related to the interaction and differentiation of individual magma batches, as well as the extent to which melt separates from solid residual source material. The nature of the source plays a crucial role in the concentration of water and volatiles that are essential for the generation of hydrothermal-magmatic mineral deposits. Future studies of granites using non-traditional stable isotope systems are expected to provide new insights into the evolution of Earth’s continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D. and Morgan, G.B. (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. Jour. Petrol., v.51, pp. 785–821.

    Article  Google Scholar 

  • Ague, J.J. (1991) Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, v.19, pp. 855–858.

    Article  Google Scholar 

  • Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geol. Soc. Amer. Mem., v.161, pp. 133–154.

    Article  Google Scholar 

  • Annen, C., Blundy, J.D. and Sparks, R.S.J. (2006) The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Jour. Petrol., v.47, pp. 505–539.

    Article  Google Scholar 

  • Atherton, M.P. (1993) Granite magmatism. Jour. Geol. Soc. London, v.150, pp. 1009–1023.

    Article  Google Scholar 

  • Ayres, M. and Harris, N. (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem. Geol., v.139, pp. 249–269.

    Article  Google Scholar 

  • Barbarin, B. (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, pp. 605–626.

    Article  Google Scholar 

  • Bartley, J.M., Coleman, D.S. and Glazner, A.F. (2008) Incremental pluton emplacement by magmatic crack-seal. Earth and Environmental Science. Trans. Royal Soc. Edinburgh, v.97, pp. 383–396.

    Article  Google Scholar 

  • Bartoli, O., Acosta-Vigil, A., Ferrero, S. and Cesare, B. (2016) Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. Amer. Mineral., v.101, pp. 1543–1559.

    Article  Google Scholar 

  • Barton, M.D. (1996) Granitic magmatism and metallogeny of southwestern North America. Earth and Environmental Science Trans. Royal Soc.f Edinburgh, v.87, pp. 261–280.

    Google Scholar 

  • Bea, F. (2012) The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, v.153, pp. 278–291.

    Article  Google Scholar 

  • Bea, F. and Montero, P. (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta, v.63, pp. 1133–1153.

    Article  Google Scholar 

  • Berger, A., Burri, T., Alt-Epping, P. and Engi, M. (2008) Tectonically controlled fluid flow and water-assisted melting in the middle crust: an example from the Central Alps. Lithos, v.102, pp. 598–615.

    Article  Google Scholar 

  • Bingen, B., Demaiffe, D. and Hertogen, J. (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochim. Cosmochim. Acta, v.60, pp. 1341–1354.

    Article  Google Scholar 

  • Blereau, E., Clark, C., Taylor, R.J., Johnson, T., Fitzsimons, I. and Santosh, M. (2016) Constraints on the timing and conditions of high grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India. Jour. Metamorph. Geol., v.34, pp. 527–549.

    Article  Google Scholar 

  • Blevin, P.L. and Chappell, B.W. (1992) The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.83, pp. 305–316.

    Google Scholar 

  • Blevin, P.L., Chappell, B.W. and Allen, C.M., 1996. Intrusive metallogenic provinces in eastern Australia based on granite source and composition. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.87, pp. 281–290.

    Article  Google Scholar 

  • Blevin, P.L. and Chappell, B.W., 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I-and S-type granites. Econ. Geol., v.90, pp. 1604–1619.

    Article  Google Scholar 

  • Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K. (2013) Zircon saturation re-revisited. Chem. Geol., v.351, pp. 324–334.

    Article  Google Scholar 

  • Bonin, B. (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, v.97, pp. 1–29.

    Article  Google Scholar 

  • Brown, C.R., Yakymchuk, C., Brown, M., Fanning, C.M., Korhonen, F.J., Piccoli, P.M. and Siddoway, C.S. (2016) From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the Fosdick Migmatite-Granite Complex, West Antarctica. Jour. Petrol., v.57, pp. 1241–1278.

    Article  Google Scholar 

  • Brown, M. (1994) The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci. Rev., v.36, pp. 83–130.

    Article  Google Scholar 

  • Brown, M. (2010) Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Can. Jour. Earth Sci., v.47, pp. 655–694.

    Article  Google Scholar 

  • Brown, M. (2013) Granite: From genesis to emplacement. Geol. Soc. Amer., Bull., v.125, pp. 1079–1113.

    Article  Google Scholar 

  • Brown, M., Averkin, Y.A., McLellan, E.L. and Sawyer, E.W. (1995) Melt segregation in migmatites. Jour. Geophys. Res. B: Solid Earth, v.100, pp. 15655–15679.

    Article  Google Scholar 

  • Brown, M. and Solar, G. (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics, v.312, pp. 1–33.

    Article  Google Scholar 

  • Brown, M. and Rushmer, T. (eds) (2006) Evolution and Differentiation of the Continental Crust. Cambridge, New York. 553p.

  • Campbell, I. and Taylor, S. (1983) No water, no granites No oceans, no continents. Geophys. Res. Lett., v.10, pp. 1061–1064.

    Article  Google Scholar 

  • Candela, P.A. and Holland, H.D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim. Cosmochim. Acta, v.48, pp. 373–380.

    Article  Google Scholar 

  • Candela, P.A. and Piccoli, P.M. (2005) Magmatic Processes in the Development of Porphyry-Type Ore Systems. Econ. Geol., v.100, pp. 25–37.

    Google Scholar 

  • Carmichael, I.S. (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contr. Mineral. Petrol., v.106, pp. 129–141.

    Article  Google Scholar 

  • Carvalho, B., Sawyer, E. and Janasi, V. (2016) Crustal reworking in a shear zone: transformation of metagranite to migmatite. Jour Metamorph. Geol., v.34, pp. 237–264.

    Article  Google Scholar 

  • Carvalho, B.B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L.S., and Poli, S. (2018). Anatexis and fluid regime of the deep continental crust: new clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy). Jour. Metamorph Geol, in press. https://doi.org/10.1111/jmg.12463.

  • Cernyì, P. (1991) Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geoscience Canada, v.18, pp. 68–81.

    Google Scholar 

  • Cernyì, P., Blevin, P.L., Cuney, M. and London, D. (2005) Granite-related ore deposits. Econ. Geol., v.100, pp. 337–370.

    Google Scholar 

  • Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. and Cavallo, A. (2009) “Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites. Geology, v.37, pp. 627–630.

    Article  Google Scholar 

  • Chappell, B., White, A. and Wyborn, D. (1987) The importance of residual source material (restite) in granite petrogenesis. Jour. Petrol., v.28, pp. 1111–1138.

    Article  Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacif. Geol., v.8, pp. 173–174.

    Google Scholar 

  • Chappell, B.W. and White, A.J., 2001. Two contrasting granite types: 25 years later. Australian Jour. Earth Sci., v.48, pp. 489–499.

    Article  Google Scholar 

  • Chappell, B.W., 2004. Towards a unified model for granite genesis. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.95, pp. 1–10.

    Article  Google Scholar 

  • Chen, G.-N. and Grapes, R. (2007) Granite Genesis: In-Situ Melting and Crustal Evolution. Springer Netherlands. 278p.

    Book  Google Scholar 

  • Clark, C., Fitzsimons, I.C., Healy, D. and Harley, S.L. (2011) How does the continental crust get really hot? Elements, v.7, pp. 235–240.

    Article  Google Scholar 

  • Clarke, D.B. (1992) Granitoid Rocks. Springer, London. 284p.

    Google Scholar 

  • Clemens, J.D. (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci. Rev., v.61, pp. 1–18.

    Article  Google Scholar 

  • Clemens, J.D. (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: M. Brown and T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge, pp. 296–327.

  • Clemens, J.D. (2011, Sept 20). Re: distinguishing I- and S-type granites [Electronic mailing list message]. Retrieved from https://www.jiscmail.ac.uk/lists/geo-metamorphism.html

  • Clemens, J.D. and Petford, N. (1999) Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Jour. Geol. Soc., v.156, pp. 1057–1060.

    Article  Google Scholar 

  • Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas? Lithos, v.134, pp. 317–329.

    Article  Google Scholar 

  • Clemens, J.D. and Stevens, G. (2015) Comment on ‘Water-fluxed melting of the continental crust: A review’ by RF Weinberg and P. Hasalová. Lithos, v.234, pp. 100–101.

    Article  Google Scholar 

  • Clemens, J.D., Stevens, G. and Farina, F. (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos, v.126, pp. 174–181.

    Article  Google Scholar 

  • Clemens, J.D. and Watkins, J. (2001) The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib. Mineral. Petrol., v.140, pp. 600–606.

    Article  Google Scholar 

  • Clemens, J.D. and Droop, G.T.R. (1998) Fluids, P-T paths and the fates of anatectic melts in the Earth’s crust. Lithos, v.44, pp. 21–36.

    Article  Google Scholar 

  • Clemens, J.D. and Stevens, G. (2016) Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth Sci. Rev., v.160, pp. 333–349.

    Article  Google Scholar 

  • Cobbing, J. (2000) The Geology and Mapping of Granite Batholiths. Springer-Verlag, Berlin. 141p.

    Google Scholar 

  • Coleman, D.S., Gray, W. and Glazner, A.F. (2004) Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, v.32, pp. 433–436.

    Article  Google Scholar 

  • Coleman, R.G. and Peterman, Z.E. (1975) Oceanic plagiogranite. Jour. Geophys. Res., v.80, pp. 1099–1108.

    Article  Google Scholar 

  • Collins, W. (1996) Lachlan Fold Belt granitoids: products of three-component mixing. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v.87, pp. 171–181.

    Article  Google Scholar 

  • Collins, W., Beams, S., White, A. and Chappell, B. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contr. Mineral. Petrol., v.80, pp. 189–200.

    Article  Google Scholar 

  • Compston, W. and Chappell, B.W. (1979). Sr-isotope evolution of granitoid source rocks. In: Jaeger, J.C. and Hales, A. (Eds.), The Earth: its origin, structure and evolution. pp. 377–426.

  • Cottle, J.M., Larson, K.P. and Yakymchuk, C. (2018) Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core. Lithos, v.312, pp. 57–71.

    Article  Google Scholar 

  • Couzinié, S., Laurent, O., Moyen, J.-F., Zeh, A., Bouilhol, P. and Villaros, A. (2016) Post-collisional magmatism: Crustal growth not identified by zircon Hf-O isotopes. Earth Planet. Sci. Lett., v.456, pp. 182–195.

    Article  Google Scholar 

  • Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: assessment of a residual-source model. Geology, v.19, pp. 163–166.

    Article  Google Scholar 

  • Cruden, A. 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: M. Brown and T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge. pp. 455–519.

  • Cuney, M. and Kyser, K. (2009) Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineral. Assoc. Canada, 272p.

    Google Scholar 

  • Cuney, M., Marignac, C. and Weisbrod, A. (1992) The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol., v.87, pp. 1766–1794.

    Article  Google Scholar 

  • Dhuime, B., Hawkesworth, C. and Cawood, P. (2011) When continents formed. Science, v.331, pp. 154–155.

    Article  Google Scholar 

  • Diener, J.F.A. and Fagereng, Å. (2014) The influence of melting and melt drainage on crustal rheology during orogenesis. Jour. Geophys. Res. B: Solid Earth, v.119, pp. 6193–6210.

    Article  Google Scholar 

  • Diener, J. F., White, R. W. and Hudson, T. J. (2014) Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer. Lithos, v.200, pp. 212–225.

    Article  Google Scholar 

  • Eby, G.N. (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, pp. 115–134.

    Article  Google Scholar 

  • Eby, G.N. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, v.20, pp. 641–644.

    Article  Google Scholar 

  • Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Spec. Publ. Soc. Econ. Geol., v.10, pp. 285–314.

    Google Scholar 

  • Farina, F., Stevens, G. and Villaros, A. (2012) Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula pluton granite (Cape Granite Suite, South Africa). Mineral. Petrol., v.106, pp. 193–216.

    Article  Google Scholar 

  • Fisher, C.M., Hanchar, J.M., Miller, C.F., Phillips, S., Vervoort, J.D. and Whitehouse, M.J. (2017) Combining Nd isotopes in monazite and Hf isotopes in zircon to understand complex open-system processes in granitic magmas. Geology, v.45, pp. 267–270.

    Article  Google Scholar 

  • Flowerdew, M., Millar, I., Vaughan, A., Horstwood, M. and Fanning, C. (2006) The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib. Mineral. Petrol., v.151, pp. 751–768.

    Article  Google Scholar 

  • Foden, J., Sossi, P.A. and Wawryk, C.M. (2015) Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos, v.212, pp. 32–44.

    Article  Google Scholar 

  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp. 2033–2048.

    Article  Google Scholar 

  • Frost, B.R. and Frost, C.D. (2008) On charnockites. Gondwana Res., v.13, pp. 30–44.

    Article  Google Scholar 

  • Frost, C.D. and Ronald Frost, B. (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology, v.25, pp. 647–650.

    Article  Google Scholar 

  • Frost, C.D. and Frost, B.R. (2010) On ferroan (A-type) granitoids: their compositional variability and modes of origin. Jour. Petrol., v.52, pp. 39–53.

    Article  Google Scholar 

  • Gao, L.-E., Zeng, L. and Asimow, P.D. (2017) Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, v.45, pp. 39–42.

    Article  Google Scholar 

  • Garcia-Arias, M. and Stevens, G. (2017) Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos, v.277, pp. 131–153.

    Article  Google Scholar 

  • Gardien, V., Thompson, A.B., Grujic, D. and Ulmer, P. (1995) Experimental melting of biotite+ plagioclase+ quartz±muscovite assemblages and implications for crustal melting. Jour. Geophys. Res. B: Solid Earth, v.100, pp. 15581–15591.

    Article  Google Scholar 

  • Gardiner, N.J., Hawkesworth, C.J., Robb, L.J., Whitehouse, M.J., Roberts, N.M., Kirkland, C.L. and Evans, N.J. (2017) Contrasting granite metallogeny through the zircon record: a case study from Myanmar. Scientific reports, v.7, pp. 748.

    Article  Google Scholar 

  • Glazner, A.F., 2007. Thermal limitations on incorporation of wall rock into magma. Geology, v.35, pp. 319–322.

    Article  Google Scholar 

  • Hammerli, J., Kemp, A.I.S. and Spandler, C. (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet. Sci. Lett., v.392, pp. 133–142.

    Article  Google Scholar 

  • Harris, L.B. and Bédard, J.H. (2015) Interactions between continent-like ‘drift’, rifting and mantle flow on Venus: gravity interpretations and Earth analogues. Geol. Soc. London, Spec. Publ., v.401, pp. 327–356.

    Article  Google Scholar 

  • Harris, N., Vance, D. and Ayres, M. (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem. Geol., v.162, pp. 155–167.

    Article  Google Scholar 

  • Harrison, T.M. and Watson, E.B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contr. Mineral. Petrol., v.84, pp. 66–72.

    Article  Google Scholar 

  • Harrison, T.M. and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim. Cosmochim. Acta, v.48, pp. 1467–1477.

    Article  Google Scholar 

  • Hawkesworth, C. and Kemp, A. (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol., v.226, pp. 144–162.

    Article  Google Scholar 

  • Holland, T.J.B., Green, E.C.R. and Powell, R. (2018) Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr. Jour. Petrol., v.59, pp. 881–900.

    Article  Google Scholar 

  • Holness, M.B. and Sawyer, E.W. (2008) On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Jour. Petrol., v.49, pp. 1343–1363.

    Article  Google Scholar 

  • Holtz, F. and Barbey, P. (1991) Genesis of peraluminous granites II. Mineralogy and chemistry of the Tourem Complex (North Portugal). Sequential melting vs. restite unmixing. Jour. Petrol., v.32, pp. 959–978.

    Article  Google Scholar 

  • Hoskin, P.W. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., v.53, pp. 27–62.

    Article  Google Scholar 

  • Howie, R.A. (1955) The geochemistry of the charnockite series of Madras, India. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.62, pp. 725–768.

    Article  Google Scholar 

  • Iles, K.A., Hergt, J.M. and Woodhead, J.D. (2018) Modelling isotopic responses to disequilibrium melting in granitic systems. Jour. Petrol., v.59, pp. 87–113.

    Article  Google Scholar 

  • Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol., v.27, pp. 293–305.

    Google Scholar 

  • Jagoutz, O.E., Burg, J.-P., Hussain, S., Dawood, H., Pettke, T., Iizuka, T. and Maruyama, S. (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contr. Mineral. Petrol., v.158, pp. 739–755.

    Article  Google Scholar 

  • Jeon, H. and Williams, I.S. (2018) Trace inheritance—Clarifying the zircon O-Hf isotopic fingerprint of I-type granite sources: Implications for the restite model. Chem. Geol., v.476, pp. 456–468.

    Article  Google Scholar 

  • Johnson, T., Hudson, N. and Droop, G. (2003) Evidence for a genetic granite-migmatite link in the Dalradian of NE Scotland. Jour. Geol. Soc. London., v.160, pp. 447–457.

    Article  Google Scholar 

  • Johnson, T.E., Clark, C., Taylor, R.J., Santosh, M. and Collins, A.S. (2015) Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geosci. Front., v.6, pp. 373–387.

    Article  Google Scholar 

  • Jung, C., Jung, S., Nebel, O., Hellebrand, E., Masberg, P. and Hoffer, E. (2009) Fluid-present melting of meta-igneous rocks and the generation of leucogranites—Constraints from garnet major-and trace element data, Lu-Hf whole rock-garnet ages and whole rock Nd-Sr-Hf-O isotope data. Lithos, v.111, pp. 220–235.

    Article  Google Scholar 

  • Kelsey, D., Clark, C. and Hand, M. (2008) Thermobarometric modelling of zircon and monazite growth in melt bearing systems: Examples using model metapelitic and metapsammitic granulites. Jour. Metamorph. Geol., v.26, pp. 199–212.

    Article  Google Scholar 

  • Kelsey, D.E. and Powell, R. (2011) Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. Jour. Metamorph. Geol., v.29, pp. 151–166.

    Article  Google Scholar 

  • Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M. and Whitehouse, M.J. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, v.315, pp. 980–983.

    Article  Google Scholar 

  • Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Foster, G.L., Kinny, P.D, Whitehouse, M.J. and Maas, R. (2008) Exploring the plutonic-volcanic link: A zircon U-Pb, Lu-Hf and O isotope study of paired volcanic and granitic units from southeastern Australia. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.97, pp. 337–355.

    Article  Google Scholar 

  • Kilpatrick, J.A. and Ellis, D.J. (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.83, pp. 155–164.

    Article  Google Scholar 

  • Klimm, K., Blundy, J.D. and Green, T.H. (2008) Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes. Jour. Petrol., v.49, pp. 523–553.

    Article  Google Scholar 

  • Koblinger, B. M. and Pattison, D. R.M. (2017). Crystallization of Heterogeneous Pelitic Migmatites: Insights from Thermodynamic Modelling. Jour. Petrol., v.58, p. 297–326.

    Article  Google Scholar 

  • Kohn, M.J., Corrie, S.L. and Markley, C. (2015) The fall and rise of metamorphic zircon. Am. Mineral., v.100, pp. 897–908.

    Article  Google Scholar 

  • Korhonen, F.J., Brown, M., Grove, M., Siddoway, C.S., Baxter, E. and Inglis, J.D. (2012) Separating metamorphic events in the Fosdick migmatite-granite complex, West Antarctica. Jour. Metamorph. Geol., v.30, pp. 165–192.

    Article  Google Scholar 

  • Korhonen, F.J., Saito, S., Brown, M. and Siddoway, C.S. (2010a) Modeling multiple melt loss events in the evolution of an active continental margin. Lithos, v.116, pp. 230–248.

    Article  Google Scholar 

  • Korhonen, F. J., Saito, S., Brown, M., Siddoway, C.S. and Day, J.M.D. (2010b) Multiple Generations of Granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: Implications for Polyphase Intracrustal Differentiation in a Continental Margin Setting. Jour. Petrol., v.51, pp. 627–670.

    Article  Google Scholar 

  • Kretz, R. (1983) Symbols for rock-forming minerals. Amer. Mineral., v.68, pp. 277–279.

    Google Scholar 

  • Kunz, B.E., Regis, D. and Engi, M. (2018) Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C? Contrib. Mineral. Petrol., v.173, pp. 26.

    Article  Google Scholar 

  • Lappin, A. and Hollister, L. (1980) Partial melting in the Central gneiss complex near Prince Rupert, British Columbia. Amer. Jour. Sci., v.280, pp. 518–545.

    Article  Google Scholar 

  • Laurent, O., Martin, H., Moyen, J.-F. and Doucelance, R. (2014) The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, v.205, pp. 208–235.

    Article  Google Scholar 

  • Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contr. Mineral. Petrol., v.99, pp. 226–237.

    Article  Google Scholar 

  • Lee, Y. and Cho, M. (2013) Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea. Lithos, v.179, pp. 249–262.

    Article  Google Scholar 

  • Lehmann, B. (1990) Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia. Econ. Geol., v.85, pp. 99–111.

    Article  Google Scholar 

  • Li, W., Jackson, S.E., Pearson, N.J., Alard, O. and Chappell, B.W. (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem. Geol., v.258, pp. 38–49.

    Article  Google Scholar 

  • Li, X., Niu, M., Yakymchuk, C., Yan, Z., Fu, C. and Zhao, Q. (2018) Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the North Wulan gneiss complex. Gondwana Res., v.61, pp. 128–149.

    Article  Google Scholar 

  • Linnen, R.L. (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+ F; constraints for mineralization in rare metal granites and pegmatites. Econ. Geol., v.93, pp. 1013–1025.

    Article  Google Scholar 

  • Loiselle, M.C. and Wones, D.R. 1979. Characteristics and origin of anorogenic granites. In: Geological Society of America Abstracts with Programs. v.11, p. 468.

    Google Scholar 

  • London, D. (2014) Subsolidus isothermal fractional crystallization. Amer. Mineral., v.99, pp. 543–546.

    Article  Google Scholar 

  • Macera, P., Di Pisa, A. and Gasperini, D. (2011) Geochemical and Sr-Nd isotope disequilibria during multi-stage anatexis in a metasedimentary Hercynian crust. European Jour. Mineral., v.23, pp. 207–222.

    Article  Google Scholar 

  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D. (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, v.79, pp. 1–24.

    Article  Google Scholar 

  • Martin, H., Moyen, J.-F. and Rapp, R. (2009) The sanukitoid series: magmatism at the Archaean-Proterozoic transition. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.100, pp. 15–33.

    Google Scholar 

  • Matzel, J.E., Bowring, S.A. and Miller, R.B. (2006) Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geol. Soc. Amer. Bull., v.118, pp. 1412–1430.

    Article  Google Scholar 

  • McCulloch, M.T. and Chappell, B.W. (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet. Sci. Lett., v.58, pp. 51–64.

    Article  Google Scholar 

  • Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U. and Ovtcharova, M. (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology, v.36, pp. 459–462.

    Article  Google Scholar 

  • Milord, I., Sawyer, E.W. and Brown, M. (2001) Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France. Jour. Petrol., v.42, pp. 487–505.

    Article  Google Scholar 

  • Morfin, S., Sawyer, E.W. and Bandyayera, D. (2014) The geochemical signature of a felsic injection complex in the continental crust: Opinaca Subprovince, Quebec. Lithos, v.196–197, pp.339–355.

    Article  Google Scholar 

  • Moyen, J.-F. and Stevens, G. (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. American Geophysical Union Geophysical Monograph, v.164, pp. 149.

    Google Scholar 

  • Moyen, J.-F. and Laurent, O. (2018) Archaean tectonic systems: A view from igneous rocks. Lithos, v.302–303, pp. 99–125.

    Article  Google Scholar 

  • Moyen, J.-F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A. and Gardien, V. (2017) Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos, v.277, pp. 154–177.

    Article  Google Scholar 

  • Moyen, J.-F. and Martin, H. (2012) Forty years of TTG research. Lithos, v.148, pp. 312–336.

    Article  Google Scholar 

  • Nédélec, A. and Bouchez, J.-L. (2015) Granites: Petrology, Structure, Geological Setting, and Metallogeny. Oxford University Press, New York. 331p.

    Book  Google Scholar 

  • Newton, R.C. and Tsunogae, T. (2014) Incipient charnockite: Characterization at the type localities. Precambrian Res, v.253, pp. 38–49.

    Article  Google Scholar 

  • O’Neil, J.R. and Chappell, B.W. (1977). Oxygen and hydrogen isotope relations in the Berridale batholith. Jour. Geol. Soc., v.133, pp. 559–571.

    Article  Google Scholar 

  • O’Neil, J., Shaw, S. and Flood, R. (1977) Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contr. Mineral. Petrol., v.62, pp. 313–328.

    Article  Google Scholar 

  • Palin, R.M., White, R.W., Green, E.C., Diener, J.F., Powell, R. and Holland, T.J. (2016) High grade metamorphism and partial melting of basic and intermediate rocks. Jour. Metamorph. Geol., v.34, pp. 871–892.

    Article  Google Scholar 

  • Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. and Ireland, T.R. (1998) Geochronology and geochemistry of pre Jurassic superterranes in Marie Byrd Land, Antarctica. Jour. Geophys. Res. B: Solid Earth, v.103, pp. 2529–2547.

    Article  Google Scholar 

  • Parnell, J., Hole, M., Boyce, A.J., Spinks, S. and Bowden, S. (2012) Heavy metal, sex and granites: Crustal differentiation and bioavailability in the mid-Proterozoic. Geology, v.40, pp. 751–754.

    Article  Google Scholar 

  • Patiño Douce, A.E. and Harris, N. (1998) Experimental constraints on Himalayan anatexis. Jour. Petrol., v.39, pp. 689–710.

    Article  Google Scholar 

  • Petford, N., Cruden, A., McCaffrey, K. and Vigneresse, J.-L. (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature, v.408, pp. 669.

    Article  Google Scholar 

  • Petford, N., Kerr, R.C. and Lister, J.R. (1993) Dike transport of granitoid magmas. Geology, v.21, pp. 845–848.

    Article  Google Scholar 

  • Piccoli, P. and Candela, P. (1994) Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. Amer. Jour. Sci., v.294, pp. 92–135.

    Article  Google Scholar 

  • Pitcher, W.S. (1997) The Nature and Origin of Granite. Springer, Netherlands. 387p.

    Book  Google Scholar 

  • Pressley, R.A. and Brown, M. (1999) The Phillips pluton, Maine, USA: evidence of heterogeneous crustal sources and implications for granite ascent and emplacement mechanisms in convergent orogens. Lithos, v.46, pp. 335–366.

    Article  Google Scholar 

  • Rajesh, H. (2007) The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India. Contr. Mineral. Petrol., v.154, pp. 591–606.

    Article  Google Scholar 

  • Rajesh, H. and Santosh, M. (2004) Charnockitic magmatism in southern India. Journal of Earth System Science, v.113, pp. 565–585.

    Article  Google Scholar 

  • Rajesh, H. and Santosh, M. (2012) Charnockites and charnockites. Geosci. Front., v.3, pp. 737–744.

    Article  Google Scholar 

  • Rajesh, H., Santosh, M. and Yoshikura, S. (2010) The Nagercoil charnockite: a magnesian, calcic to calc-alkalic granitoid dehydrated during a granulite-facies metamorphic event. Jour. Petrol., v.52, pp. 375–400.

    Article  Google Scholar 

  • Rosenberg, C. and Handy, M. (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. Jour. Metamorph. Geol., v.23, pp. 19–28.

    Article  Google Scholar 

  • Rubatto, D. (2017) Zircon: the metamorphic mineral. Rev. Mineral. Geochem., v.83, pp. 261–295.

    Article  Google Scholar 

  • Rubatto, D., Williams, I.S. and Buick, I.S. (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contr. Mineral. Petrol., v.140, pp. 458–468.

    Article  Google Scholar 

  • Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, v.33, pp. 267–309.

    Article  Google Scholar 

  • Rutter, E.H. and Mecklenburgh, J. 2006. The extraction of melt from crustal protoliths and the flow behavior of partially molten crustal rocks: an experimental perspective. In: M. Brown and T. Rushmer. (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge University Press.

  • Samperton, K.M., Bell, E.A., Barboni, M., Keller, C.B. and Schoene, B. (2017) Zircon age-temperature-compositional spectra in plutonic rocks. Geology, v.45, pp. 983–986.

    Article  Google Scholar 

  • Samperton, K.M., Schoene, B., Cottle, J.M., Keller, C.B., Crowley, J.L. and Schmitz, M.D. (2015) Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological-geochemical constraints from the Bergell Intrusion, Central Alps. Chem. Geol., v.417, pp. 322–340.

    Article  Google Scholar 

  • Sautter, V., Toplis, M., Wiens, R., Cousin, A., Fabre, C., Gasnault, O., Maurice, S., Forni, O., Lasue, J. and Ollila, A. (2015) In situ evidence for continental crust on early Mars. Nature Geoscience, v.8, pp. 605.

    Article  Google Scholar 

  • Savage, P.S., Georg, R.B., Williams, H.M., Turner, S., Halliday, A.N. and Chappell, B.W. (2012) The silicon isotope composition of granites. Geochim. Cosmochim. Acta, v.92, pp. 184–202.

    Article  Google Scholar 

  • Sawyer, E.W. (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. Jour. Petrol., v.32, pp. 701–738.

    Article  Google Scholar 

  • Sawyer, E.W. (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. Jour. Petrol., v.39, pp. 1147–1167.

    Article  Google Scholar 

  • Sawyer, E.W., Cesare, B. and Brown, M. (2011). When the continental crust melts. Elements, v.7, pp. 229–234.

    Article  Google Scholar 

  • Sawyer, E. (2014) The inception and growth of leucosomes: microstructure at the start of melt segregation in migmatites. Jour. Metamorph. Geol., v.32, pp. 695–712.

    Article  Google Scholar 

  • Sawyer, E.W. (1987) The Role of Partial Melting and Fractional Crystallization in Determining Discordant Migmatite Leucosome Compositions. Jour. Petrol., v.28, pp. 445–473.

    Article  Google Scholar 

  • Sawyer, E.W. (2008) Atlas of migmatites. NRC Research Press.

  • Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., Marocchi, M. and Bargossi, G.M. (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet. Sci. Lett., v.286, pp. 208–218.

    Article  Google Scholar 

  • Schaltegger, U. and Davies, J.H. (2017) Petrochronology of zircon and baddeleyite in igneous rocks: Reconstructing magmatic processes at high temporal resolution. Rev. Mineral. Geochem., v.83, pp. 297–328.

    Article  Google Scholar 

  • Schoene, B. (2014) 4.10-U-Th-Pb Geochronology. Treatise on geochemistry, 2nd edition. v.4, pp. 341–378.

    Article  Google Scholar 

  • Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A. and Günther, D. (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett., v.355, pp. 162–173.

    Article  Google Scholar 

  • Schwindinger, M. and Weinberg, R.F. (2017) A felsic MASH zone of crustal magmas—Feedback between granite magma intrusion and in situ crustal anatexis. Lithos, v.284, pp. 109–121.

    Article  Google Scholar 

  • Shen, B., Jacobsen, B., Lee, C.-T.A., Yin, Q.-Z. and Morton, D.M. (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc. National Acad. Sci., v.106, pp. 20652–20657.

    Article  Google Scholar 

  • Shirey, S.B. and Hanson, G.N. (1984) Mantle-derived Archaean monozodiorites and trachyandesites. Nature, v.310, pp. 222–224.

    Article  Google Scholar 

  • Siddoway, C.S., Richard, S.M., Fanning, C.M., Luyendyk, B.P. and Whitney, D. (2004) Origin and emplacement of a middle Cretaceous gneiss dome, Fosdick Mountains, West Antarctica. Geol. Soc. Amer. Spec. Paper, pp.267–294.

  • Skjerlie, K.P. and Johnston, A.D. (1992) Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology, v.20, pp. 263–266.

    Article  Google Scholar 

  • Slagstad, T., Jamieson, R.A. and Culshaw, N. (2005) Formation, crystallization, and migration of melt in the mid-orogenic crust: Muskoka domain migmatites, Grenville Province, Ontario. Jour. Petrol., v.46, pp. 893–919.

    Article  Google Scholar 

  • Solar, G.S. and Brown, M. (2001) Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? Jour. Petrol., v.42, pp. 789–823.

    Article  Google Scholar 

  • Stepanov, A.S., Hermann, J., Rubatto, D. and Rapp, R.P. (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem. Geol., v.300, pp. 200–220.

    Article  Google Scholar 

  • Stevens, G. and Clemens, J.D. (1993) Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem. Geol., v.108, pp. 1–17.

    Article  Google Scholar 

  • Stevens, G., Villaros, A. and Moyen, J.-F. (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, v.35, pp. 9–12.

    Article  Google Scholar 

  • Streckeisen, A. (1976) To each plutonic rock its proper name. Earth Sci. Rev., v.12, pp. 1–33.

    Article  Google Scholar 

  • Strong, D. (1981) Ore deposit models-5. A model for granophile mineral deposits. Geoscience Canada, v.8.

  • Tang, M., Wang, X.-L., Shu, X.-J., Wang, D., Yang, T. and Gopon, P. (2014) Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis. Earth Planet. Sci. Lett., v.389, pp. 188–199.

    Article  Google Scholar 

  • Tartèse, R. and Boulvais, P. (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, v.114, pp. 353–368.

    Article  Google Scholar 

  • Taylor, H.P. (1968). The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol., v.19, pp. 1–71.

    Article  Google Scholar 

  • Taylor, J. and Stevens, G. (2010) Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites. Lithos, v.120, pp. 277–292.

    Article  Google Scholar 

  • Taylor, R.J., Kirkland, C.L. and Clark, C. (2016) Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, v.264, pp. 239–257.

    Article  Google Scholar 

  • Thompson, A. (1983) Fluid-absent metamorphism. Jour. Geol. Soc. London, v.140, pp. 533–547.

    Article  Google Scholar 

  • Thompson, A.B. (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Amer. Jour. Sci., v.282, pp. 1567–1595.

    Article  Google Scholar 

  • Tuttle, O.F. and Bowen, N.L. (1958). Origin of granite in the light of experimental studies in the system: NaAlSi3O8. Geol. Soc. Amer. Mem., v 74.

  • Valley, J., Lackey, J., Cavosie, A., Clechenko, C., Spicuzza, M., Basei, M., Bindeman, I., Ferreira, V., Sial, A. and King, E. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contr. Mineral. Petrol., v.150, pp. 561–580.

    Article  Google Scholar 

  • Vavra, G. (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contr. Mineral. Petrol., v.117, pp. 331–344.

    Article  Google Scholar 

  • Vigneresse, J.L., Barbey, P. and Cuney, M. (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Jour. Petrol., v.37, pp. 1579–1600.

    Article  Google Scholar 

  • Vigneresse, J.L., Barbey, P. and Cuney, M. (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Jour. Petrol., v.37, pp. 1579–1600.

    Article  Google Scholar 

  • Villaros, A., Stevens, G., Moyen, J.-F. and Buick, I.S. (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contr. Mineral. Petrol., v.158, pp. 543–561.

    Article  Google Scholar 

  • Wall, V.J., Clemens, J.D. and Clarke, D.B. (1987) Models for granitoid evolution and source compositions. Jour. Geol., v.95, pp. 731–749.

    Article  Google Scholar 

  • Wang, W., Dunkley, E., Clarke, G.L. and Daczko, N.R. (2014) The evolution of zircon during low-P partial melting of metapelitic rocks: theoretical predictions and a case study from Mt Stafford, central Australia. Jour. Metamorph. Geol., v.32, pp. 791–808.

    Article  Google Scholar 

  • Watkins, J., Clemens, J.D. and Treloar, P.J. (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contr. Mineral. Petrol., v.154, pp. 91–110.

    Article  Google Scholar 

  • Watson, E.B. (1979) Apatite saturation in basic to intermediate magmas. Geophys. Res. Lett., v.6, pp. 937–940.

    Article  Google Scholar 

  • Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., v.64, pp. 295–304.

    Article  Google Scholar 

  • Watt, G.R. and Harley, S.L. (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contr. Mineral. Petrol., v.114, pp. 550–566.

    Article  Google Scholar 

  • Wawryk, C.M. and Foden, J.D. (2015) Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: a case study from the Renison Sn-W deposit, Tasmania. Geochim. Cosmochim. Acta, v.150, pp. 285–298.

    Article  Google Scholar 

  • Weinberg, R.F. and Hasalová, P. (2015) Water-fluxed melting of the continental crust: A review. Lithos, v.212, pp. 158–188.

    Article  Google Scholar 

  • Whalen, J.B. (1985) Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, PNG. Jour. Petrol., v.26, pp. 603–632.

    Article  Google Scholar 

  • Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contr. Mineral. Petrol., v.95, pp. 407–419.

    Google Scholar 

  • White, A.J.R. and Chappell, B.W. (1974) Two contrasting granite types. Pacific Geology, v.8, pp. 173–174.

    Google Scholar 

  • White, A.J.R. (1979). Sources of granite magmas. In Geological Society of America Abstracts with Programs. p. 539.

  • White, R.W., Stevens, G. and Johnson, T.E. (2011) Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations. Elements, v.7, pp. 241–246.

    Article  Google Scholar 

  • Whitney, J.A. (1988) The origin of granite: The role and source of water in the evolution of granitic magmas. Geol. Soc. Amer. Bull., v.100, pp. 1886–1897.

    Article  Google Scholar 

  • Williams, M.A., Kelsey, D.E., Baggs, T., Hand, M. and Alessio, K.L. (2018) Thorium distribution in the crust: Outcrop and grain-scale perspectives. Lithos, v.320–321, pp. 222–235.

    Article  Google Scholar 

  • Wolfram, L., Weinberg, R., Hasalová, P. and Becchio, R. (2017) How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina. Jour. Petrol., v.58, pp. 2339–2364.

    Article  Google Scholar 

  • Wray, J.J., Hansen, S.T., Dufek, J., Swayze, G.A., Murchie, S.L., Seelos, F.P., Skok, J.R., Irwin III, R.P. and Ghiorso, M.S. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, v.6, pp. 1013.

    Article  Google Scholar 

  • Wu, Y.B., Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, F.Y. and Liu, X.M. (2007) Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Jour. Metamorph. Geol., v.25, pp. 991–1009.

    Article  Google Scholar 

  • Yakymchuk, C. (2017a) Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, v.274–275, pp. 412–426.

    Article  Google Scholar 

  • Yakymchuk, C. (2017b) Applying Phase Equilibria Modelling to Metamorphic and Geological Processes: Recent Developments and Future Potential. 2017, pp.27–45.

  • Yakymchuk, C. and Brown, M. (2014a) Consequences of open-system melting in tectonics. Jour. Geol. Soc. London, v.171, pp. 21–40.

    Article  Google Scholar 

  • Yakymchuk, C. and Brown, M. (2014b) Behaviour of zircon and monazite during crustal melting. Jour. Geol. Soc. London, v.171, pp. 465–479.

    Article  Google Scholar 

  • Yakymchuk, C., Siddoway, C.S., Fanning, C.M., Mcfadden, R., Korhonen, F.J. and Brown, M. (2013a) Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf-O perspective from West Antarctica. Geol. Soc. London, Spec. Publ., v.383, pp. SP383. 387.

    Article  Google Scholar 

  • Yakymchuk, C., Brown, M., Ivanic, T.J. and Korhonen, F.J. (2013b) Leucosome distribution in migmatitic paragneisses and orthogneisses: A record of self-organized melt migration and entrapment in a heterogeneous partially-molten crust. Tectonophysics, v.603, pp. 136–154.

    Article  Google Scholar 

  • Yakymchuk, C., Brown, M., Clark, C., Korhonen, F.J., Piccoli, P.M., Siddoway, C.S., Taylor, R.J.M. and Vervoort, J.D. (2015a) Decoding polyphase migmatites using geochronology and phase equilibria modelling. Jour. Metamorph. Geol., v.33, pp. 203–230.

    Article  Google Scholar 

  • Yakymchuk, C., Brown, C.R., Brown, M., Siddoway, C.S., Fanning, C.M., and Korhonen, F.J. (2015b) Paleozoic evolution of western Marie Byrd Land, Antarctica. Geol. Soc. Amer. Bull., v.127, pp. 1464–1484.

    Article  Google Scholar 

  • Yakymchuk, C., Clark, C. and White, R.W. (2017). Phase Relations, Reaction Sequences and Petrochronology In: M.J. Kohn and P. Lanari (Eds), Petrochronology, pp. 13–53.

  • Yakymchuk, C., Kirkland, C.L. and Clark, C. (2018) Th/U ratios in metamorphic zircon. Jour. Metamorph. Geol., v.36, pp. 715–737.

    Article  Google Scholar 

  • Yamato, P., Duretz, T., May, D.A. and Tartese, R. (2015) Quantifying magma segregation in dykes. Tectonophysics, v.660, pp. 132–147.

    Article  Google Scholar 

  • Yardley, B.W. and Valley, J.W. (1997) The petrologic case for a dry lower crust. Jour. Geophys. Res. B: Solid Earth, v.102, pp. 12173–12185.

    Article  Google Scholar 

  • Zeck, H. and Williams, I. (2002) Inherited and Magmatic Zircon from Neogene Hoyazo Cordierite Dacite, Se Spain—anatectic Source Rock Provenance and Magmatic Evolution: in Memoriam Professor Chris Powell, 2001.07. 21. Jour. Petrol., v.43, pp. 1089–1104.

    Article  Google Scholar 

  • Zeng, L., Asimow, P.D. and Saleeby, J.B. (2005) Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim. Cosmochim. Acta, v.69, pp. 3671–3682.

    Article  Google Scholar 

  • Zeng, L., Saleeby, J.B. and Asimow, P. (2005) Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, v.33, pp. 53–56.

    Article  Google Scholar 

Download references

Acknowledgements

This admittedly biased review has benefited from numerous discussions with colleagues and students. Nonetheless, any errors or omissions are my own. I thank Sandeep Singh for the invitation to write this review and an anonymous reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yakymchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakymchuk, C. On Granites. J Geol Soc India 94, 9–22 (2019). https://doi.org/10.1007/s12594-019-1261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1261-2

Navigation