Skip to main content
Log in

Petrogenesis and Geochemical Evolution of Dhauladhar and Dalhousie Granites, NW Himalayas

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Whole rock geochemical analysis has been carried out on samples from Dhauladhar and Dalhousie granites of the northwestern region of Himalayas. The mineral assemblage of these granites is K-feldspar, plagioclase, and biotite, with Dhauladhar granite being richer in plagioclase and biotite than the Dalhousie granites. The Dhauladhar granites are mostly coarse to medium-grained porphyritic, variably mylonatized and biotite bearing whereas, the Dalhousie granites are fine-grained two-mica granites. The silica-rich (SiO2=64–72 wt %) Dhauladhar granites have a potassic (K2O/Na2O> 0.9–1.8) and peraluminous (A/CNK=1.03–1.3) character. Dalhousie granites show a similar character, albeit to a different degree (SiO2=69–74 wt %), (K2O/Na2O > 1.1–1.5), (A/CNK=1.3–1.7). The Dalhousie granites are richer in, U, Th, and LREE, yet extremely depleted in Sr, Ba, Nb. They have flatter REE patterns with comparatively strong Eu anomaly (Eu/Eu*=0.02–0.04). The Rb/Ba vs Rb/Sr and CaO/Na2O vs Al2O/TiO2 ratios indicate sedimentary source with the psammitic nature for Dhauladhar and pelitic nature for Dalhousie granites. However, the Eu/Eu* value indicates that plagioclase abundance is greater in Dhauladhar granites than in Dalhousie granites. The present study suggests that Dalhousie granites being more evolved than Dahuladhar granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre, C.J. and Minster, J.F. (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett., v.38(1), pp.1–25.

    Article  Google Scholar 

  • Bea, F., Montero, P. G., Gonzalez-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J. H., … and Zinger, T. (2006) Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Jour. Geol. Soc. London, v. 163(5), 847–855

    Google Scholar 

  • Bhatia, G.S. and Kanwar, R.C. (1973) Mylonitization in outer Granite Band of Dalhousie, Himachal Pradesh. Himalayan Geol., v.3 pp.103–115

    Google Scholar 

  • Bhatia, G.S. (1975) Contribution to the Geology of Dalhousie Chamba area Himachal Pradesh, India.

  • Cawood, P.A., Johnson, M.R. and Nemchin, A.A. (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett., v.255(1–2), pp.70–84. doi: https://doi.org/10.1016/j.epsl.2006.12.006.

    Article  Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1992) I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v.83(1–2), pp.1–26. doi:https://doi.org/10.1017/S0263593300007720

    Google Scholar 

  • Chappell, B.W. and White, A.J. (2001) Two contrasting granite types: 25 years later. Australian Jour. Earth Sci., v.48(4), pp.489–499. doi:https://doi.org/10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Chaudhri, N. (1996) Geochemistry and petrogenesis of the Palampur Granitoids, Dhauladhar range, northwestern Himalaya, India. Chemie Der Erde -Geochemistry, v.56(1), pp.25–43.

    Google Scholar 

  • Clemens, J.D. (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth-Science Rev., pp.611–612, pp.1–18.

  • Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas?. Lithos, v.134, pp.317–329. doi:https://doi.org/10.1016/j.lithos.2012.01.001

    Article  Google Scholar 

  • Collins, W. J. and Sawyer, E.W. (1996) Pervasive granitoid magma transfer through the lower-middle crust during non coaxial compressional deformation. Jour.Metamor. Geol., v.14(5), doi:https://doi.org/10.1046/j.1525-1314.1996.00442.x

    Google Scholar 

  • Conrad, W.K., Nicholls, I.A. and Wall, V.J. (1988) Water-saturated and-undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. Jour. Petrol., v.29(4), pp.765–803.

    Article  Google Scholar 

  • DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B. and Spurlin, M. (2000) Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, v.288(5465), pp.497–499.

    Article  Google Scholar 

  • DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planetary Sci. Lett., v.53(2), 189–202.

    Article  Google Scholar 

  • Frank, W., Thoni, M. and Purtscheller, F. (1977) Geology and petrography of Kullu-South Lahul area. — Colloques Internationaux du C.N.R.S., v. 286, pp.147–172.

    Google Scholar 

  • Frost, B.R. and Frost, C.D. (2013) Essentials of igneous and metamorphic petrology. Cambridge University Press

  • Gao, L.E. and Zeng, L. (2014) Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochim. Cosmochim. Acta, v.130, pp.136–155.

    Article  Google Scholar 

  • Harris, N.B.W. and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., v. 110(1), 46–56. doi:https://doi.org/10.1007/BF00310

    Article  Google Scholar 

  • Healy, B., Collins, W.J. and Richards, S.W. (2004) A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos, v.78(1–2), pp.197–216. doi:https://doi.org/10.1016/j.lithos.2004.04.047

    Article  Google Scholar 

  • Holtz, F., Behrens, H., Dingwell, D.B. and Taylor, R.P. (1992) Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chemical Geol., v.96(3–4), pp.289–302.

    Article  Google Scholar 

  • Holtz, F. and Johannes, W. (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos, v.32(1–2), 149–159. doi:https://doi.org/10.1016/0024-4937(94)90027-2

    Article  Google Scholar 

  • Inger, S. and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Jour. Petrol., 34(2), pp.345–368. doi:https://doi.org/10.1093/petrology/34.2.345.

    Article  Google Scholar 

  • Irber, W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu”, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, v.63(3–4), pp.489–508.

    Article  Google Scholar 

  • Irvine, T. N. J. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Jour. Earth Sci., v.8(5), pp.523–548.

    Article  Google Scholar 

  • Jung, S. and Pfander, J. A. (2007) Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Jour. Mineral., v.19(6), pp.859–870. doi:https://doi.org/10.1127/0935-1221/2007/0019-1774

    Article  Google Scholar 

  • Kemp, A.J. and Hawkesworth, C.J. (2003) Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. In: R.L. Rudnick (Ed.), The Crust (Treatise on Geochemistry, Vol 3) (pp. 349–410). Amsterdam: Elsevier.

    Google Scholar 

  • Kansal, A. K., Singh, V. P., Anupam, K., & Bhanot, V. B. (2003) Rb–Sr isotopic and geochronological studies of the granitic rocks of Dalhousie area, Himachal Pradesh. In: ISMAS silver jubilee symposium on mass spectrometry. V.2: contributed papers.

  • Lahoti, S., Kumud, K., Gupta, Y. and Jain, A.K. (2017) Tectonics ofthe Chamba Nappe, NW Himalaya and its regional implications. Italian Jour. Geosci., v.136, pp.50–63. doi: 0.3301/IJG.2015.39

    Article  Google Scholar 

  • Le Fort, P. (1983) The lower Paleozoic “Lesser Himalayan” granitic belt: emphasis on the Simchar pluton of Central Nepal. Granites of Himalayas, Karakorum and Hindu Kush, pp.235–255.

    Google Scholar 

  • Le Fort, P. (1986) The 500 Ma magmatic event in Alpine southern Asia, a thermal episode at Gondwana scale. Evolution des Domaines Orogeniques d’Asie Meridionale, 47, 191–209.

    Google Scholar 

  • Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B. N. and Vidal, P. (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics, v.134(1–3), pp.39–57. doi:https://doi.org/10.1016/0040-1951(87)90248-4

    Article  Google Scholar 

  • McMahon, C.A. (1881) Note on the section from Dalhousie to Pangi via Sach Pass. Rec. Geol. Surv. India, v.14, pp.305–310.

    Google Scholar 

  • Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P. and Draganits, E. (2001) The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geol. Magz., v.138(3), pp.237–251.

    Google Scholar 

  • Mukherjee, P.K., Purohit, K.K., Rathi, M.S. and Khanna, P.P., (1998) Geochemistry and Petrogenesis of a Supracrustal Granite from Dalhousie, Himachal Himalaya. Jour. Geol. Soc. India, v.52, pp.163–180.

    Google Scholar 

  • Nautiyal, S.P., Dhoundhial, D.P., Nadgir, B.B., Das Gupts, S.P. and Ramachanndra, A.V. (1952) Suitability of the Dharakot Limestone for Portland cement manufacture, Kangra, H.P. Rec. Geol. Surv. India, v.87(4), pp.707–750.

    Google Scholar 

  • Patino Douce, A. E. (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, v.25(8), pp.743–746. doi:https://doi.org/10.1130/0091-7613.

    Article  Google Scholar 

  • Patino Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. London, Spec. Publ., v.168(1), pp.55–75. doi:https://doi.org/10.1144/GSL.SP.1999.168.01.05

    Article  Google Scholar 

  • Patino Douce, A.E. and Beard, J.S. (1996). Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Jour. Petrol., v.37(5), pp.999–1024.

    Article  Google Scholar 

  • Rollinson, H.R. (2014) Using geochemical data: evaluation, presentation, interpretation. Routledge

  • Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V. and Krishna, G.V. (2014) High precision multielement analysis on geological samples by HR-ICPMS. In 28th ISMAS Symposium Cum Workshop on Mass Spectrometry. Indian So. Mass Spectrometry, Mumbai, India, pp.181–184

  • Singh, S. and Jain, A.K. (1996). Ductile shearing of the Proterozoic Chor Granitoid in the Lesser Himalaya and its tectonic significance. Jour. Geol. Soc. India, v.47(1), pp.133–138.

    Google Scholar 

  • Singh, S. and Jain, A.K. (2003). Himalayan granitoids. Jour. Virtual Explorer, v.11, pp.1–20.

    Google Scholar 

  • Singh, J. and Johannes, W. (1996) Dehydration melting of tonalites. Part I. Beginning of melting. Contrib. Mineral. Petrol., v.125(1), pp.16–25.

    Article  Google Scholar 

  • Singh, S. (2003) Conventional and SHRIMP U-Pb Zircon Dating of the Chor Granitoid, Himachal Himalaya. Jour. Geol. Soc. India, v.62, pp.614–626.

    Google Scholar 

  • Singh, S. (2005) A review of U-Pb ages from Himalayan Collisonal Belt. Jour. Himalayan Geol., v.26, pp.61–76.

    Google Scholar 

  • Singh, S., Barley, M.E., Brown, S.J., Jain, A.K. and Manickavasagam, R.M. (2002) SHRIMP U-Pb in zircon geochronology of the Chor granitoid: evidencefor Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Res., v.118, pp.285–292. doi:https://doi.org/10.1016/S0301-9268(02)00107-9

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.S. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., London, Spec. Publ., v. 42(1), pp.313–345.

    Article  Google Scholar 

  • Sylvester, P.J. (1998) Post-collisional strongly peraluminous granites. Lithos, v.45(1–4), pp.29–44. doi:https://doi.org/10.1016/S0024-4937(98)00024-3

    Article  Google Scholar 

  • Thakur, V.C., Rautela, P. and Jafaruddin, M. (1995). Normal faults in Panjal thrust zone in lesser Himalaya and between the higher Himalaya crystallines and Chamba sequence in Kashmir Himalaya, India. Proc. Indian Acad. Sci. EarthPlanet. Sci., v. 104(3), pp.499–508.

    Google Scholar 

  • Thirlwall, M.F. and Jones, N.W. (1983) Isotope geochemistry and contamination mechanics of Tertiary lavas from Skye, Northwest Scotland. Continental basalts and mantle xenoliths, pp.186–208.

  • Watkins, J.M., Clemens, J.D. and Treloar, P.J. (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib. Mineral. Petrol., v.154(1), pp.91–110.

    Article  Google Scholar 

  • Weinberg, R.F. and Hasalová, P. (2015) Water-fluxed melting ofthe continental crust: A review. Lithos, v.212, pp.158–188.

    Article  Google Scholar 

  • Zaraysky, GP., Alfereva, J.O. and Udoratina, O.V. (2007) Geochemical features of the tantalum deposit in Eastern Transbaikalia Etyka. In: Sixth International Hutton Symposium. Origin of granites and related rocks. Abstract. Stellenbosch, South Africa (pp. 232–233).

  • Zheng, Y.F., Zhou, J.B., Wu, Y.B. and Xie, Z. (2005) Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Internat. Geol. Rev., v.47(8), pp.851–871. doi:https://doi.org/10.2747/0020-6814.47.8.851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, R., Singh, S. Petrogenesis and Geochemical Evolution of Dhauladhar and Dalhousie Granites, NW Himalayas. J Geol Soc India 93, 399–408 (2019). https://doi.org/10.1007/s12594-019-1194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1194-9

Navigation