Skip to main content
Log in

Redox Condition, Nature and Tectono-magmatic Environment of Granitoids and Granite gneisses from the Karbi Anglong Hills, Northeast India: Constraints from Magnetic Susceptibility and Biotite Geochemistry

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Karbi Anglong hills (erstwhile Mikir hills) in northeast India are detached and separated from the Meghalaya plateau by a NW-SE trending Kopili rift. The Karbi Anglong hills granitoids (KAHG) and its granite gneissic variants belong to Cambrian plutons formed during Pan-African orogenic cycle, which commonly intrude the basement granite gneisses and Shillong Group metasediments. The KAHG can be broadly classified into three major granitoid facies viz., coarse grained porphyritic granitoid, medium grained massive non-porphyritic granitoid, and granite gneiss, which share a common mineral assemblage of plagioclase-K-feldspar-quartz-biotite±hornblende-apatite-titanite-zircon-magnetite but differ greatly in mineral proportion and texture. Modal mineralogy of KAHG, granite gneiss and basement granite gneiss largely represents monzogranite and syenogranite. The magnetic susceptibility (MS) of the KAHG, granite gneiss and basement granite gneiss varies widely between 0.11×10-3 and 43.144×10-3 SI units, corresponding to ilmenite series (<3×10-3 SI; reduced type) and magnetite series (>3×10-3 SI; oxidized type) of granitoids respectively. The observed MS variations are most likely intrinsic to heterogeneous source regions, modal variations of orthomagnetic and ferromagnetic minerals, and tectonothermal and deformational processes that acted upon these rocks. The primary and re-equilibrated compositions of biotites from the KAHG, granite gneiss and basement granite gneiss suggest calcalkaline, metaluminous (I-type) nature of felsic host magma formed in a subduction or post-collisional to peraluminous (S-type) host magma originated in syn-collisional tectonic settings, which were evolved and stabilized between FMQ and NNO buffers typically corresponding to reducing and oxidising magma environments respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, A.M. (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Jour. Petrol., v.35, pp.525–541.

    Article  Google Scholar 

  • Acharyya, S.K. (2003) The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Res., v.6(2), pp.197–214.

    Article  Google Scholar 

  • Ague, J. J. and Brimhall, G. H. (1988) Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California: Geol. Soc. Amer. Bull., v.100, pp.891–911.

    Article  Google Scholar 

  • Albuquerque, C.A.R. (1973) Geochemistry of biotites from granitic rocks, Northern Portugal: Geochim. Cosmochim. Acta., v.37, pp.1779–1802. Doi:10.1016/0016-7037(73)90163-4.

    Article  Google Scholar 

  • Anderson, J.L. and Thomas, W.M. (1985) Proterozoic anoro-genic two-mica granites—Silver Plume and St. Vrain batholiths of Colorado. Geol., v.13, pp.177–180.

    Google Scholar 

  • Aydin, F., Karsli, O. and Sadiklar, M.B. (2003) Mineralogy and chemistry of biotites from Eastern Pontide granitoid rocks, NE-Turkey: Some petrological implications for granitoid magmas. Chem. Erde., v.63, pp.163–182.

    Article  Google Scholar 

  • Batchelor, R.A. (2003) Geochemistry of biotite in metabentonites as an age discriminant, indicator of regional magma sources and potential correlating tool. Mineral. Magz., v.67, pp.807–817.

    Article  Google Scholar 

  • Beane, R.E. (1974) Biotites stability in the porphyry copper environment. Econ. Geol., v.69, pp.241–256.

    Article  Google Scholar 

  • Bidyananda, M. and Deomurari, M.P. (2007) Geochronological constraints on the evolution of Meghalaya Massif, northeastern India: An ion microprobe study. Curr. Sci., v.93, No.11.

    Google Scholar 

  • Bora, S. and Kumar, S. (2015) Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism. Internatl. Geol. Rev., v.57(11-12), pp.1686–1706.

    Article  Google Scholar 

  • Burkhard, D.J.M. (1993) Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. Geol. En Mijnb., v.71, pp.337–349.

    Google Scholar 

  • Chappel, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geol., v.8, pp.173–174.

    Google Scholar 

  • Chatterjee, N., Mazumdar, A.C., Bhattacharya, A. and Saikia, R.R. (2007) Mesoproterozoic granulites of the Shillong–Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Res., v.152, pp.1–26.

    Article  Google Scholar 

  • Chatterjee, N., Bhattacharya, A., Duarah, B.P. and Mazumdar, A.C. (2011) Late Cambrian reworking of Palaeo-Mesoproterozoic granulites in Shillong–Meghalaya Gneissic Complex (Northeast India): evidence from PT pseudosection analysis and monazite chronology and implications for East Gondwana assembly. Jour. Geol., v.119, pp.311–330.

    Article  Google Scholar 

  • Chimote, J.S., Pandey, B.K., Bagchi, A.K., Basu, A.N., Gupta, J.N. and Saraswat, A.C. (1988) Rb–Sr whole-rock isochron age for the Mylliem granite, Khasi Hills, Meghalaya. In: Proceedings of Fourth National Symposium on Mass Spectrometry, Bangalore, pp.EPS–9/1–9/4.

    Google Scholar 

  • Choudhury, D. K., Pradhan, A. K., Zakaulla, S. and Umamaheshwar, K. (2012) Geochemistry and petrogenesis of anorogenic (?) granitoids of west Garo Hills, Meghalaya. Jour. Geol. Soc. India., v.80, pp.276–286.

    Article  Google Scholar 

  • Clarke, D. B. (1981) The mineralogy of peraluminous granites: A review. Can. Min., v.19, pp.3–17.

    Google Scholar 

  • Czamanske, G.K. and Wones, D.R. (1973) Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 2, the mafic silicates: Jour. Petrol., v.14, pp.349–380. Doi:10.1093/petrology/14.3.349.

    Article  Google Scholar 

  • Dodge, F.C.W., Smith, V. C. and Mays, R.E. (1969) Biotites from granitic rocks of the central Sierra Nevada Batholith, California. Jour. Petrol., v.10, pp.250–271.

    Article  Google Scholar 

  • Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Amer. Mineral., v.68, pp.880–889.

    Google Scholar 

  • Dall’Agnol, R., Rämö, O.T., Magalhães, M.S. and Macambira, M.J.B. (1999) Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian craton: implications for the genesis of Proterozoic A-type granites. Lithos. v.46, pp.431–462.

    Article  Google Scholar 

  • Eyal, M., Litvinosky, B.A., Katzir, Y. and Zanvilevich, A.N. (2004) The Pan-African high-K calc-alkaline peraluminous Elat Granite from Southern Isreal: geology, geochemistry and petrogenesis. Jour. Earth. Sci., v.40, pp.115–136.

    Google Scholar 

  • Foster, M.D. (1960) Interpretation of the composition of tri-octahedral micas. USGS Prof. Paper 354-B., pp.11–49.

    Google Scholar 

  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp.1771–1802.

    Article  Google Scholar 

  • Frost, C.D. and Frost, B.R. (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. Jour. Petrol., v.52, pp.39–53.

    Article  Google Scholar 

  • Ghosh, S., Bhalla, J.K., Paul, D.K., Sarkar, A., Bishui, P.K. and Gupta, S.N. (1991) Geochronology and geochemistry of granite plutons from East Khasi Hills, Meghalaya. Jour. Geol. Soc. India., v.37, pp.331–342.

    Google Scholar 

  • Ghosh, S., Chakraborty, S., Paul, D.K., Bhalla, J.K., Bishui, P.K. and Gupta, S.N. (1994) New Rb-Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in Middle to Late Proterozoic crustal evolution. Indian Minerals, v.48, pp.33–44.

    Google Scholar 

  • Ghosh, S., Fallick, A.E., Paul, D.K. and Potts, P.J. (2005) Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, Northeast India: implications for linkage with amalgamation of Gondwana Supercontinent. Gondwana Res., v.8, pp.421–432.

    Article  Google Scholar 

  • Gregorová, D., Hrouda, F. and Kohút, M. (2003) Magnetic susceptibility and geochemistry of Variscan West Carpathian granites: implications for tectonic setting. Phys. Chem. Earth., v. 28, pp. 729–734.

    Article  Google Scholar 

  • Heinrich, E. W. (1946) Studies in the mica group. Science, v.244, pp.836–848.

    Google Scholar 

  • Hussain, M. and Ahmed, T. (2009) Geochemical characteristics of the granitoids of Mikir Hills massif of Shillong Plateau, Northeast India: implication of Pan-African magmatic activity. Geological Anatomy of India and the Middle East. In: Ahmed, T., Hirsch, F., Charusiri, P. (Eds.), Virt. Explorer. Jour. El. Edn.

    Google Scholar 

  • Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Min. Geol. (Tokyo), v.27, pp.293–305.

    Google Scholar 

  • Ishihara, S., Robb, L.J., Anhaeusser, C. R. and Imai, A. (2002) Granitoid series in terms of magnetic susceptibility: A case study from the Barberton Region, South Africa. Gondwana Res., v.5, pp.581–589.

    Article  Google Scholar 

  • Kaur, P., Zeh, A., Chaudhri, N. and Eliyas, N. (2017) Two distinct sources of 1.73-1.70 Ga A-type granites from the northern Aravalli orogen, NW India: Constraints from in situ zircon U-Pb ages and Lu-Hf isotopes. Gondwana Res., v.49, pp.164–181.

    Article  Google Scholar 

  • Kumar, N. and Vallinayagam, G. (2012) Geochemistry and petrogenesis of Neoproterozoic A-type granites at Nakora in the Malani Igneous Suite, Western Rajasthan, India. Chinese. Jour. Geochem. v.31(3), pp.221–233.

    Article  Google Scholar 

  • Kumar, S. (2008) Magnetic susceptibility mapping of Ladakh granitoids, northwest Higher Himalaya: Implication to redox series of felsic magmatism in the subduction environments. Mem. Geol. Soc. India, no.72, pp.83–102.

    Google Scholar 

  • Kumar, S. and Pathak, M. (2009) Magnetic susceptibility and geochemistry of felsic igneous rocks from western Arunachal Himalaya: implication on granite series evaluation in orogenic belt. In: S. Kumar (Ed.) Magmatism, Tectonism and Mineralization. Macmillan Publishers India Ltd, New Delhi, pp. 74–91.

    Google Scholar 

  • Kumar, S. and Pathak, M. (2010) Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya: Evidence of bimodal granitogeny and tectonic affinity: Jour. Geol. Soc. India, v.75, pp.715–730. Doi:10.1007/s12594-010-0058-0.

    Article  Google Scholar 

  • Kumar, S. and Pieru, T. (2010) Petrography and major elements geochemistry of microgranular enclaves and neoproterozoic granitoids of south Khasi, Meghalaya: Evidence of magma mixing and alkali diffusion. Jour. Geol. Soc. India., v.76, pp.345–360. doi:10.1007/s12594-010-0106-9.

    Article  Google Scholar 

  • Kumar, S. and Rino, V. (2007) Redox series evaluation of Cu(±Mo±Au) hosting Palaeoproterozoic Malanjkhand granitoids and enclaves, central India: evidence from magnetic susceptibility, phase petrology and geochemistry. Jour. Econ. Geol. Resour. Manag., v.4, pp.105–127.

    Google Scholar 

  • Kumar, S. and Singh, Kh. M. (2008) Granite series evaluation of Early Ordovician Kyrdem granitoids and enclaves, Meghalaya Plateau, Northeast India: Implication on oxidation condition of interacting mafic-felsic magma system. Earth Sci. India, v.1, pp.204–219.

    Google Scholar 

  • Kumar, S., Pieru, T. and Rino, V. (2005) Evaluation of granitoid-series and magmatic oxidation of Neoproterozoic South Khasi Granitoids and their microgranular enclaves, Meghalaya: constraints from magnetic susceptibility and biotite composition. Jour. Appld. Geochem., v.7, pp.175–194.

    Google Scholar 

  • Kumar, S., Rino, V. and Pal, A.B. (2004) Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India: Gond. Res., v. 7, pp. 539–548. doi:10.1016/S1342-937X(05)70804-2.

    Article  Google Scholar 

  • Kumar, S., Singh, B., Joshi, C.C. and Pandey, A. (2006) Magnetic susceptibility and biotite composition of granitoids of Amritpur region, Kumaun Lesser Himalaya: implication on granite series evaluation and nature of felsic magma. Jour. Geol. Soc. India, v.68, pp.666–674.

    Google Scholar 

  • Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017a) Contribution of Columbia and Gondwana Supercontinent assembly-and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp.356–375.

    Article  Google Scholar 

  • Kumar. S., Pieru. T., Rino. V. and Hayasaka. V (2017b) Geochemistry and U–Pb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India: evidence of synchronous maûc–felsic magma mixing–fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle. Geol. Soc., London, Spl Publ, v.457, DOI:10.1144/SP457.10.

  • Kretz, R. (1983) Symbols for rock-forming minerals: Amer. Mineral., v.68, pp.277–279.

    Google Scholar 

  • Lalonde, A.E. and Bernard, P. (1993) Composition and color of Biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, Northwest Territories. Can. Mineral., v.31, pp.203–217.

    Google Scholar 

  • Le Maitre, R. W. (2002) A classification and glossary of terms. Recommendations of IUGS Subcommision on the Systematics of Igneous rocks.2nd Ed., Cambridge Univ. Press, Cambridge, pp-236.

    Book  Google Scholar 

  • Machev, P., Klain, L. and Hecht, L. (2004) Mineralogy and geochemistry of biotites from the Belogradchik pluton–some petrological implications for granitoid magmatism in north-west Bulgaria: Bulgarian Geol. Soc., Ann. Sci. Conf. “Geology 2004”, 16.–17.12.2004., pp.48–50.

    Google Scholar 

  • Majumdar, D. (2010) Need to intensify base metal exploration activities in Mikir Hills, northeastern India. Cur.Sci., v.99, No.5.

    Google Scholar 

  • Majumdar, D. and Dutta, P. (2016) Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: evidence from geochemistry and isotope geology. Jour. Asian Earth Sci., v.117, pp.256–268.

    Article  Google Scholar 

  • Majumdar, D., Dutta, P. and Gogoi, A. (2016) Contribution to the physicochemical condition of granitoid emplacement in a part of Karbi Hills, NE India. SCIREA Jour. Geosci., v.1., pp.50–77.

    Google Scholar 

  • Mazumder, S.K. (1976) A summary of the Precambrian geology of the Khasi Hills, Meghalaya. Geol. Surv. India. Misc. Publ., v.23, pp.311–324.

    Google Scholar 

  • Mazumder, S. K. (1986) The Precambrian framework of the Khasi Hills, Meghalaya. Rec. Geol. Surv. India, v.117, pp.1–59.

    Google Scholar 

  • Mbassa, B.J., Kamgang, P., Goire, M. G., Njonfang, E., Benoit, M., Itiga, Z., Duchene, S., Bessong, M., Nguet, P.W, Mfomou, N. (2016) Evidence of heterogeneous crustal origin for the Pan-African Mbengwi granitoids and the associated mafic intrusions (northwestern Cameroon, central Africa). C. R. Geosci. DOI: 10.1016/j.crte.2015.09.009.

    Google Scholar 

  • Nachit, H., Razafimahefa, N., Stussi, J.M. and Carron, J.P. (1985) Composition chimique des biotites et typologie magmatique des granitoides.–Comptes rendus de l’Académie des sciences, 301/11, pp.813–818.

    Google Scholar 

  • Nachit, H., Ibhi, A., Abia, El.H. and Ohoud, M. B. (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. C. R. Geosci., v.337, pp.1415–1420.

    Article  Google Scholar 

  • Nandy, D.R. (2001) Geodynamics of northeastern India and the adjoining region (Abc publication) Kolkata, 209p.

    Google Scholar 

  • Neiva, A.M.R. (1981) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, v.14, pp.149–163.

    Article  Google Scholar 

  • Scandolara, J.E., Fuck, R.A., Dantas, E.L. and Souza, V.S. (2013) Geochemistry of Jamari complex, central-eastern Rondônia: Andean type magmatic arc and Paleoproterozoic crustal growth of the southwestern Amazonian Craton, Brazil. Jour. South Amer. Earth. Sci. v.46, pp.1–28.

    Article  Google Scholar 

  • Selvam, A.P., Prasad, R.N., Dhannaraju, R. and Sinha, R.M. (1995) Rb–Sr age of the metaluminous granitoids of South Khasi Batholith, Meghalaya: implications on its genesis and Pan-African activity in northeastern India. Jour. Geol. Soc. India., v.46, pp.619–624.

    Google Scholar 

  • Singh, B and Kumar, S. (2004) Geochemistry of biotite, muscovite and tourmaline from Early Palaeozoic granitoids of Kinnaur district, Higher Himachal Himalaya. Extended abstracts: 19th Himalaya-Karakoram-Tibet workshop, Niseko, Japan. Himalayan Jour. Sci., v.2, pp.248–249.

    Google Scholar 

  • Speer, J.A. (1981) Petrology of cordierite-and almandine bearing granitoid plutons of the southern Appalachian Piedmont, U.S.A. Can. Min., v.19, pp.35–46.

    Google Scholar 

  • Streckeisen, A. (1973) Classification and Nomenclature of Plutonic Rocks Recommendations by the IUGS Subcomission on the Systematics of Igneous Rocks. N. Jahrburch für Mineralogie, Monatshefre, pp. 149–164.

    Google Scholar 

  • Takagi, T. and Tsukimura, K. (1997) Genesis of oxidized-and reduced-type granites. Econ. Geol., v.92, pp. 81–86.

    Article  Google Scholar 

  • Takahashi, M., Aramaki, S. and Ishihara, S. (1980) Magnetite-series/Ilmeniteseries vs. I-type/S-type granitoids. Min. Geol. Spec. Issue, No.8, pp.13–28.

    Google Scholar 

  • Wones, D. R. (1972) Stability of biotite: A reply. Amer. Mineral., v.57, pp.316–317.

    Google Scholar 

  • Wones, D.R. and Eugster, H.P. (1965) Stability of biotite: Experiment, theory and application: Amer. Min., v.50, pp.1228–1272.

    Google Scholar 

  • Yavuz, F. and Öztas, T. (1997) BIOTERM-a program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites: Comput. Geosci., v.23, pp.897–907. Doi:10.1016/S0098-3004(97)00071-X.

    Google Scholar 

  • Yin, A., Dubey, C.S., Webb, A.A.G., Kelty, T.K., Grove, M., Gehrels, G.E. and Burgess, W.P. (2010) Geologic correlation of the Himalayan orogen and Indian Craton: part I. Structural geology, U–Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighbouring regions in Northeast India. Geol. Soc. Amer. Bull., v.122, pp.336–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikoleno Rino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anettsungla, Rino, V. & Kumar, S. Redox Condition, Nature and Tectono-magmatic Environment of Granitoids and Granite gneisses from the Karbi Anglong Hills, Northeast India: Constraints from Magnetic Susceptibility and Biotite Geochemistry. J Geol Soc India 91, 601–612 (2018). https://doi.org/10.1007/s12594-018-0911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0911-0

Navigation