Skip to main content
Log in

Geology and Petrology of the Intraplate Cenozoic Continental Basalts in the Transcaucasian Intermountain Area (Georgia)

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Transcaucasian intermountain area is part of the Caucasus segment of the Alpine-Mediterranean mountain belt. The continental intraplate basalts of the study area range in age from 6.10 ± 0.20 to 6.40 ± 0.20 Ma. The basalt erupted from monogenetic volcanoes are formed by lava flows and their pyroclastic equivalents. They are generally characterized by low volumes, are predominantly subalkalic with minor alkaline composition. The ultramafic xenoliths have not been identified in the basalts. The basalts may be subdivided into porphyritic and oligophyric groups. Fractional crystallization plays an important role in the petrogenesis of basalts. Almost all the studied samples showed different degrees of fractionation of olivine ± plagioclase ± clinopyroxene. No significant contamination of basalts with upper continental crustal material was confirmed by Rb/Sr and Rb/Ba ratios or by Sr, Nd isotopic and geochemical composition (87Sr/ 86Sr = 0.703683-0.704531±2; 143Nd/144Nd = 0.512788-0.512848 ±10; 147Sm/144Nd = 0.1036-0.1144 ±2-3). The studied basalts display, compared to heavy rare earth elements (HREE), highly fractionated light rare earth elements (LREE) with La/Yb=9.25-24.00. This makes them similar to ocean island basalts (OIB), which is also evidenced by Ce/Pb, La/Nb, Zr/Nb, Zr/Y ratios. The Dy/Yb-La/Yb and Yb-La/Yb and 87Sr/86Sr-143Nd/144Nd ratios indicating a “mixed” evolution of basalt-forming magmas. The basalt feeding magma chambers of the Transcaucasian intermountain area seem to be formed from a mixture of partial melting of Normal-MORB (Mid-Ocean Ridge Basalt) type upper mantle (garnet and spinel lherzolite) and EMII type components with strong ocean island basalts (OIB)-like signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Aal M. Abdel-Karim, EI-Nuri, M. Ramadan, Mohamed, R. Embashi (2013) Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects. Jour. Geol. Res., v.2013, 12p.

    Google Scholar 

  • Abdel-Fattah, M.-A.R., Lease, N.A. (2012) Petrogenesis of Cenozoic mafic–ultramafic alkaline lavas from the Tigris volcanic field, NE Syria. Geol. Mag., v.149(1), pp.1–18.

    Article  Google Scholar 

  • Aldanmaza, E., Pearcea, J.A., Thirlwallb, M.F., Mitchel, J.G. (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia,Turkey. Jour. Volcanol. Geotherm. Res., v.102(1-2), pp.67–95.

    Article  Google Scholar 

  • Aldanmaz, E., Kopru, basi N., Gurer, O.F., Kaymakci N., Gourgaud A. (2006) Geochemical constraints on the Cenozoic, OIB-type alkalinevolcanic rocks of NW Turkey: Implications for mantle sources and melting processes. Lithos v.86(1-2), pp.50–76.

    Article  Google Scholar 

  • Alex, J., McCoy-West., Baker, J.A., Faure, K; Wysoczanski, R. (2010) Petrogenesis and Origins of Mid-Cretaceous Continental Intraplate Volcanism in Marlborough, New Zealand: Implications for the Long-lived HIMU Magmatic Mega-province of the SW Pacific. Jour. Petrol., v.51, pp.2003–2045.

    Article  Google Scholar 

  • Alpaslan, M. (2007) Early to Middle Miocene intra-continental basaltic volcanism in the northern part of the Arabian plate, SE Anatolia, Turkey: geochemistry and petrogenesis. Geol. Magz., v.144, pp.867–882.

    Google Scholar 

  • Altherr, R., Henjes-Kunst, F., Baumann, A. (1990) Asthenosphere versus lithospere as possible sourses for basaltic magmas erupted during formation of the Red See: contraints from Sr, Pb and Nd isitopes. Earth Planet. Sci. Lett., v.96, pp.269–286

    Article  Google Scholar 

  • Baker, A., Menzies, M.A., Thirlwall, M.F., Macpherson, C. (1997) Petrogenesis of Quaternary IntraplateVolcanism, Sana’a, Yemen: Implications for Plume–Lithosphere Interaction and Polybaric Melt Hybridization. Jour. Petrol., v.38(10), pp.1359–1390

    Article  Google Scholar 

  • Ballmer, M.D., Conrad, C.P., Smith, E.I., (2012) Basaltic continental intraplate volcanism as sustained by shear-driven upwelling. EGU General Assembly, held 22-27 April in Vienna, Austria, 3273.

    Google Scholar 

  • Bartnitsky, Y.N., Dudauri, O., Stepanyuk, L. (1990) Geochronology of phanerozoic granitoids from folded areas of eastern Europe. Isotopes in Nature. Leipzig, 1-10.

    Google Scholar 

  • Blusztajn, J., Hart, S.R., Shimizu, N., McGuire, A.V. (1995) Trace-element and isotopic characteristics of spinel peridotite xenoliths from Saudi Arabia. Chemical Geol., v.123, pp.53–65.

    Article  Google Scholar 

  • Bogaard, P.J.F., Wörner, G. (2003) Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany. Jour. Petrol., v.44(3), pp.569–602.

    Article  Google Scholar 

  • Cohen, R.S., O’Nions, R.K. and Dawson, J.B. (1984) Isotope geochemistry of xenoliths from East Africa: implications for development of mantle reservoirs and their interaction. Earth Planet. Sci. Lett., v.68, pp.209–220.

    Article  Google Scholar 

  • Cook, C., Briggs, R., Smith, I.E.M., Maas, R. (2005) Petrology and Geochemistry of Intraplate Basalts in the South Auckland Volcanic Field, New Zealand: Evidence for Two Coeval Magma Suites from Distinct Sources. Jour. Petrol., v.46(3), pp.473–503.

    Article  Google Scholar 

  • Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The Interpretation of Igneous Rocks. George, Allen and Unwin, London. 449p.

    Book  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., Smith, N.D. (2007) Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts. Jour. Petrol., v.48, pp.2093–2124.

    Article  Google Scholar 

  • Davidson, J.P. and Wilson, I.R. (1989) Evolution of an alkali basalt–trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallisation. Earth Planet. Sci. Lett., v.95, pp.141–160.

    Article  Google Scholar 

  • Deniel, C., Vidal, P., Coulon, C., Vellutini, P.J., Piquet, P (1994) Temporal evolution of mantle sources during continental rifting: the volcanism of Djibouti (Afar). Jour. Geophys. Res., v.99, pp.2853–2869.

    Article  Google Scholar 

  • Duyverman, H.J., Harris, N.B.W., Hawkesworth, C.J. (1982) Crustal accretion in the Pan-African: Nd and Sr isotope evidence from the Arabian Shield. Earth Planet. Sci. Lett., v.59, pp.315–326.

    Article  Google Scholar 

  • Ekstrand, A. and Enkhbaatar, T. (2007) Petrogenesis of Quaternary basalts in southerh Hangay Mountains, Central Mongolia: Mantle sourse and magmatic evolution. 20th Annual Keck Symposium; http://keck.wooster. edu/publications.

    Google Scholar 

  • Ewart, A. (1982) The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Thorp, R.S. (ed), Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, pp.25–95.

    Google Scholar 

  • Haase, K.M., Mühe, R. and Stoffers, P. (2000) Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geol., v.166, pp.225–239.

    Article  Google Scholar 

  • Hegner, E. and Pallister, J.S. (1989) Pb, Sr and Nd isotopic characteristics of Tertiary Red Sea rift volcanics from the central Saudi Arabian coastal plain. Jour. Geophys. Res., v.94(B6), pp.7749–7755.

    Article  Google Scholar 

  • Hirose, K. (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys. Res. Lett., v.24, pp.2837–2840.

    Article  Google Scholar 

  • Hirschmann, M.M., Kogiso, T., Baker, M.B. and Stolper, E.M. (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, v.31, pp.481–484

    Article  Google Scholar 

  • Humphreus, E.R. and Niu, Y. (2009) On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, v.112, pp.118–136.

    Article  Google Scholar 

  • Irvine, T.N. and Baragare, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Can. Jour. Earth Sci., v.8, pp.523–548

    Article  Google Scholar 

  • Irving, A.J. and Perece, C. (1981) Geochemistry and evolution of lherzolitebearing phonolitic lavas from Nigeria, Australia, East Germany and New Zealand. Geochim. Cosmochim. Acta, v.45, pp.1309–1320

    Article  Google Scholar 

  • Keskin, M., Chugaev, A.V., Lebedev, V.A., Sharkov, E.V., Oyan, V., Kavak, O. (2012) The geochronology and origin of mantle sources for late cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadað neovolcanic area of Turkey. Part 2. The results of geochemical and isotope (Sr-Nd-Pb) studies. Jour. Volcanol. Seismolo., v.6, pp.361–382.

    Article  Google Scholar 

  • Krienitz, M.S., Haase, K.M., Mezger, K., Eckardt, V., Shaikh-Mashail, M.A. (2006) Magma genesis and crustal contamination of continental intraplate lavas in northwestern Syria. Contrib. Mineral. Petrol., v.151, pp.698–716.

    Article  Google Scholar 

  • Krienitz, M.S., Haase, K.M., Mezger, K; Shaikh-Mashail, M.A. (2007) Magma genesis and mantle dynamics at the Harrat Ash Shamah volcanic field (southern Syria). Jour. Petrol., v.48, pp.1513–1542.

    Article  Google Scholar 

  • Lease, N.A., Abdel-Rahman, A.F.M. (2008) The Euphrates volcanic field, northeastern Syria: petrogenesis of Cenozoic basanites and alkali basalts. Geol. Magz., v.145(5), pp.685–701.

    Google Scholar 

  • Le bas, M., Le Maitre, R., Streckeisen, A., Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Jour. Petrol., v.27, pp.745–750.

    Article  Google Scholar 

  • Lebedev, B.A., Chernishcev, I.B., Chugaev, A.B., Dudauri, O.Z., Vashakidze, G.T. (2006) K-Ar age and Sr–Nd isotopic sistematic Subalcaline bazalts of Zentral-Georgian Neovolcanic area (Great Cavcasus). Reports of the Academy of Sciences. Jour. Geochem., v.408(4), pp.1–6.

    Google Scholar 

  • Lucassen, F., Franz, G., Romer, R.L., Pudlo, D., Dulski, P. (2008) Nd, Pb, and Sr isotope composition of Late Mesozoic to Quaternary intra-plate magmatism in NE Africa (Sudan, Egypt): high-µ signatures from the mantle lithosphere. Contrib. Mineral. Petrol., v.156, pp.765–784.

    Article  Google Scholar 

  • Ma, G.S.-K., Malpas, J., Xenophontos, C., Chan, G.H.N. (2011) Petrogenesis of Latest Miocene–Quaternary Continental Intraplate Volcanism along the Northern Dead Sea Fault System (Al Ghab–Homs Volcanic Field), Western Syria: Evidence for Lithosphere–Asthenosphere Interaction. Jour. Petrol., v.52, pp.401–430.

    Article  Google Scholar 

  • Ma, G.S.-K., Malpas, J., Suzuki, K., Lo, CH., Wang, K.L., Iizuka, Y., Xenophontos, C. (2013) Evolution and origin of the Miocene intraplate basalts on the Aleppo Plateau, NW Syria., Chem. Geol., v.335, pp.149–171

    Article  Google Scholar 

  • McDonough, W. F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geol., v.120, pp.223–253

    Article  Google Scholar 

  • Mcdonough, W. F., Mcculloch, M. T., Sun, S. (1985) Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implications for the evolution of the sub-continental lithosphere. Geochim. Cosmochim. Acta. v.49, pp.2051–2067.

    Article  Google Scholar 

  • McGuire, A. V., Stern, R. J. (1993) Granulite xenoliths from western Saudi Arabia: the lower crust of the late Precambrian Arabian–Nubian Shield. Contrib. Mineral. Petrol., v.114, pp.395–408

    Article  Google Scholar 

  • McKenzie, D.P. and O’Nions, R.K. (1991) Partial melt distribution from inversion of rare earth element concentrations. Jour. Petrol., v.32, pp.1021–1091.

    Article  Google Scholar 

  • Meschede M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the 2Nb-Zr/4-Y diagram. Chemical Geol., v.56(3-4), pp.207–218.

    Article  Google Scholar 

  • Miyashiro, A. (1974) Volcanic rock series in island arcs and active continental margins. Amer. Jour. Sci., v.274, pp.321–355.

    Article  Google Scholar 

  • Pilet, S., Baker, M.B., Stolper, E.M. (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science, v.320, pp.916–919.

    Article  Google Scholar 

  • Pouclet, A., Bellon, H. (1992) Geochemistry and isotopic composition of volcanic rocks from the Yamato basin: hole 794D, Sea of Japan1. Proceedings of the Ocean Drilling Program, Scientific Results, v.127/128, Pt. 2, pp.779–789.

    Google Scholar 

  • Shaw, J. E., Baker, J. A., Menzies, M. A., Thirlwall, M. F., Ibrahim, K.M. (2003) Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. Jour. Petrol., v.44, pp.1657–1679.

    Article  Google Scholar 

  • Shaw, J. E., Baker, J. A., Kent, A. J. R., Ibrahim, K. M., Menzies, M. A. (2007) The geochemistry of the Arabian lithospheric mantle - a Source for intraplate volcanism? Jour. Petrol., v.48, pp.1495–1512

    Article  Google Scholar 

  • Shilling, J.G., Kingsley, R.H., Hanan, B.B; McCully, B.L. (1992) Nd–Sr–Pb isotopic variations along the Gulf of Aden: evidence for Afar mantle plume–continental lithosphere interaction. Jour. Geophys. Res., v.97(10), pp.927–10,966.

    Google Scholar 

  • Skhirtladze, N. (1958) Post-Paleogenic Effusive Volcanism of Georgia., Tbilisi. p.333.

    Google Scholar 

  • Skhirtladze, N., Vinogradov, V., Tutberidze, B., Dudauri, O. (1990) Isotopic content of Sr in the young volcanics of Georgia. Acad. Sci. Georgia, v.139, pp.349–352.

    Google Scholar 

  • Stein, M., Hofmann, A. W. (1992) Fossil plume head beneath the Arabian lithosphere? Earth Planet. Sci. Lett., v.114, pp.193–209.

    Article  Google Scholar 

  • Stein, M. and Goldstein, S. L. (1996) From plume head to continental lithosphere in the Arabian–Nubian shield. Nature, v.382. pp.773–778.

    Article  Google Scholar 

  • Sun, S.-S. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ., no.42, pp.313–345.

    Article  Google Scholar 

  • Suzanne, Y., O’Reilly, S.Y., Zhang, M. (1995) Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle? Contrib. Mineral. Petrol., v.121(2), pp.148–170.

    Article  Google Scholar 

  • Taylor, S.R., McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Oxford: Blackwell Science.

    Google Scholar 

  • Thirlwall, M.F., Upton, B.G.J., Jenkins, C. (1994) Interaction between continental lithosphere and the Iceland plume—Sr–Nd–Pb isotope chemistry of Tertiary basalts, NE Greenland. Jour. Petrol., v.35, pp.839–879.

    Article  Google Scholar 

  • Timm, C., Hoernle, K., Van Den Bogaard, P., Bindeman, I., Weaver, S. (2009) Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between Asthenospheric and Lithospheric Melts Jour. Petrol., v.50, pp.989–1023.

    Article  Google Scholar 

  • Togonidze, M., Dudauri, O. (2000) Petrology and Geochronology of Granitoides of the Dzirula crystalline massif. Transactions of the scientific session dedicated to the 110th anniversary of academician A. Janelidze.

    Google Scholar 

  • Tutberidze, B. (2004) Geology and Petrology of the Late Orogenic Magmatism of the Central Part of the Caucasian Segment. Tbilisi, 339p.

    Google Scholar 

  • Tutberidze, B. (2012) Cenozoic Volcanism of the Caucasian Mobile Belt in Georgia, its Geological-Petrological Peculiarities and Geodynamic Conditions.Turkish Jour. Earth Sci., v.21, pp.799–815.

    Google Scholar 

  • Volker, F., McCulloch, M. T., Altherr, R. (1993) Submarinebasalts from the Red Sea: new Pb, Sr, and Nd isotopic data. Geophys. Res. Lett., v.20, pp.927–930.

    Article  Google Scholar 

  • Zhang, J.J., Zheng, Y.F., Zhao, Z.F. (2009) Geochemical evidence for interaction between oceanic crust and lithospheric mantlein the origin of Cenozoic continental basalts in east-central China, Lithos v.110, pp.305–326.

    Article  Google Scholar 

  • Zindler, A. and Hart, S.R. (1986) Chemical geodynamics. Jour. Earth Planet. Sci., v.14, pp.493–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bezhan Tutberidze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutberidze, B., Akhalkatsishvili, M. Geology and Petrology of the Intraplate Cenozoic Continental Basalts in the Transcaucasian Intermountain Area (Georgia). J Geol Soc India 91, 363–372 (2018). https://doi.org/10.1007/s12594-018-0863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0863-4

Navigation