Skip to main content
Log in

Density, Viscosity and Velocity (Ascent Rate) of Alkaline Magmas

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Three distinct alkaline magmas, represented by shonkinite, lamprophyre and alkali basalt dykes, characterize a significant magmatic expression of rift-related mantle-derived igneous activity in the Mesoproterozoic Prakasam Alkaline Province, SE India. In the present study we have estimated emplacement velocities (ascent rates) for these three varied alkaline magmas and compared with other silicate magmas to explore composition control on the ascent rates. The alkaline dykes have variable widths and lengths with none of the dykes wider than 1 m. The shonkinites are fine- to medium-grained rocks with clinopyroxene, phologopite, amphibole, K-feldspar perthite and nepheline as essential minerals. They exhibit equigranular hypidiomorphic to foliated textures. Lamprophyres and alkali basalts characteristically show porphyritic textures. Olivine, clinopyroxene, amphibole and biotite are distinct phenocrysts in lamprophyres whereas olivine, clinopyroxene and plagioclase form the phenocrystic mineralogy in the alkali basalts. The calculated densities [2.54–2.71 g/cc for shonkinite; 2.61–2.78 g/cc for lamprophyre; 2.66–2.74 g/cc for alkali basalt] and viscosities [3.11–3.39 Pa s for shonkinite; 3.01–3.28 Pa s for lamprophyre; 2.72–3.09 Pa s for alkali basalt] are utilized to compute velocities (ascent rates) of the three alkaline magmas. Since the lamprophyres and alkali basalts are crystal-laden, we have also calculated effective viscosities to infer crystal control on the velocities. Twenty percent of crystals in the magma increase the viscosity by 2.7 times consequently decrease ascent rate by 2.7 times compared to the crystal-free magmas. The computed ascent rates range from 0.11–2.13 m/sec, 0.23–2.77 m/sec and 1.16–2.89 m/sec for shonkinite, lamprophyre and alkali basalt magmas respectively. Ascent rates increase with the width of the dykes and density difference, and decrease with magma viscosity and proportion of crystals. If a constant width of 1 m is assumed in the magma-filled dyke propagation model, then the sequence of emplacement velocities in the decreasing order is alkaline magmas (4.68–15.31 m/sec) > ultramafic-mafic magmas (3.81–4.30 m/sec) > intermediate-felsic magmas (1.76–2.56 m/sec). We propose that SiO2 content in the terrestrial magmas can be modeled as a semi-quantitative “geospeedometer” of the magma ascent rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armienti, P., Perinelli, C. and Putirka, K.D. (2013) A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). Jour. Petrol., v.54, pp.795–813.

    Article  Google Scholar 

  • Arndt, N. (2013) The formation massif anorthosite: petrology in reverse. Geosci. Frontiers, v.4, pp.195–198.

    Article  Google Scholar 

  • Arndt, N.T., Naldrett, A.J. and Pyke, D.R. (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, Northeast Ontario. Jour. Petrol., v.18, pp.319–369.

    Article  Google Scholar 

  • Arzi, A.A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics, v.44, pp.173–184.

    Article  Google Scholar 

  • Babu, E.V.S.S.K., Vijaya Kumar, K. and Pyle, D.M. (1997) Spinel (hercynite) adcumulate from the Chimakurti gabbro-anorthosite pluton, Prakasam District, Andhra Pradesh, India: evidence for plagioclase buoyancy and magma mixing. Curr. Sci., v.73, pp.441–444.

    Google Scholar 

  • Bauchy, M., Guillot, B., Micoulaut, M. and Sator, N. (2013) Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation. Chem. Geol., v.346, pp.47–56.

    Article  Google Scholar 

  • Barauh, A., Gupta, A.K., Mandal, N. and Singh, R.N. (2013) Rapid ascent conditions of diamond-bearing kimberlitic magmas: findings from high pressure-temperature experiments and finite element modeling. Tectonophysics, v.594, pp.13–26.

    Article  Google Scholar 

  • Behrens, H. and Schulze, F. (2003) Pressure dependence of melt viscosity in the system NaAlSi3O8-CaMgSi2O6. Amer. Mineral., v.88, pp.1351–1363.

    Article  Google Scholar 

  • Bird, D.K., Rosing, M.T., Manning, C.E. and Rose, M.N. (1985) Geological field studies of the Miki fjord area, East Greenland. Bull. Geol. Soc. Denmark., v.34, pp.219–236.

    Google Scholar 

  • Blatter, D.L. and Carmichael, I.S.E. (1998) Hornblende peridotite xenoliths from central Mexico reveal the highly oxidized nature of subarc upper mantle. Geology, v.26, pp.1035–1038.

    Article  Google Scholar 

  • Bottinga, Y. and Weill, D.F. (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Amer. Jour. Sci., v.269, pp.169–182.

    Article  Google Scholar 

  • Bottinga, Y. and Weill, D.F. (1972) The viscosity of magmatic silicate liquids: a model for calculation. Amer. Jour. Sci., v.272, pp.438–475.

    Article  Google Scholar 

  • Bourgue, E. and Richet, P. (2001) The effects of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study. Earth Planet. Sci. Lett., v.193, pp.57–68.

    Article  Google Scholar 

  • Branigan, N.P. (1989) Internal deformation, flow profiles and emplacement velocities of granitic dykes, southwestern Finland. Lithos, v.22, pp.199–211.

    Article  Google Scholar 

  • Bühn, B. and Rankin, A.H. (1999) Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochim. Cosmochim. Acta, v.63, pp.3781–3797.

    Article  Google Scholar 

  • Caricchi, L., Burlini, L., Ulmer, P., Gerya, T., Vassalli, M. and Papale, P. (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. v.264, pp.402–419.

    Article  Google Scholar 

  • Costa, A. (2005) Viscosity of high crystal content melts: dependence on solid reaction. Geophys. Res. Lett., v.32, doi: https://doi.org/10.1029/2005GL024303

  • Demouchy, S., Jacobsen, S.D., Gaillard, F. and Stern, C.R. (2006) Rapid magma ascent recorded by water diffusion profiles in olivine from Earth’s mantle. Geology, v.34, pp.429–432.

    Article  Google Scholar 

  • Dingwall, D.D., Bagdassarov, G.Y., Bussod, G.Y. and Webb, S.L. (1993) Magma rheology. Mineral. Assoc. Canada, Short Course Handbook on Experiments at high pressure and applications to the Earth’s mantle, v.21, pp.131–196.

    Google Scholar 

  • Dingwell, D.B. (1987) Melt viscosities in the system NaAlSi3O8-H20-F20−1. In: Mysen, B.O. (Ed.), Magmatic Processes: Physicochemical Principles. Spec. Publ. Geochem. Soc., v.1, pp. 423–431.

    Google Scholar 

  • Dingwell, D.B. (1996) Volcanic dilemma: flow or blow? Science, v.273, pp.1054–1055.

    Article  Google Scholar 

  • Dingwell, D.B. (2006) Transport properties of magmas: diffusion and rheology. Elements, v.2, pp.281–286.

    Article  Google Scholar 

  • Dingwell, D.B. and Hess, K.U. (1998) Melt viscosities in the system Na-Fe-Si-O-F-Cl: contrasting effects of F and Cl in alkaline melts. Amer. Mineral., v.83, pp.1016–1021.

    Article  Google Scholar 

  • Dingwell, D.B. and Webb, S.L. (1990) Relaxation in silicate melts. Europe. Jour. Mineral., v.2, pp.427–449.

    Article  Google Scholar 

  • Downes, P.J., Wartho, J.A. and Griffin, B.J. (2006) Magmatic evolution and ascent history of the Aries micaceous kimberlite, Central Kimberley Basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV laser 40Ar/39Ar analysis of phlogopite-biotite. Jour. Petrol., v.47, pp.1751–1783.

    Article  Google Scholar 

  • Ernst, R.E., Head, J.W., Parfitt, E.A., Grosfils, E. and Wilson, L. (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci. Rev., v.39, pp.1–58.

    Article  Google Scholar 

  • Feeley, T.C. and Davidson, J.P. (1994) Petrology of calc-alkaline lavas at Volcan Ollagüe and the origin of compositional diversity at central Andean stratovolcanoes. Jour. Petrol., v.35, pp.1295–1340.

    Article  Google Scholar 

  • Fitton, J.G. and Godard, M. (2004) Origin and evolution of magmas on the Ontong Java Plateau. In: Fitton, J.G., Mahoney, J.J., Wallace, P. and Saunders, A.D. (Eds.), Origin and Evolution of the Ontong Java Plateau. Geol. Soc. London, Spec. Publ., v.229, pp.151–178.

    Google Scholar 

  • Fuster, J.M., Ibarrola, E. and Lopez-Ruiz, J. (1966) Volcanological and petrological study of the island of Lanzarote (Canary Islands). Estudios Geol., v.22, pp.185–200.

    Google Scholar 

  • Fluegel, A. (2007) Glass viscosity calculation based on a global statistical modelling approach. Glass Technology: European Jour. Glass Sci. Tech., v.48, pp.13–30.

    Google Scholar 

  • Genge, M.J., Price, G.D. and Jones, A.P. (1995) Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas. Earth Planet. Sci. Lett., v.131, pp.225–238.

    Article  Google Scholar 

  • Giberti, G. and Wilson, L. (1990) The influence of geometry on the ascent of magma in open fissures. Bull. Volcanol., v.52, pp.515–521.

    Article  Google Scholar 

  • Giordano, D., Russell, J.K. and Dingwell, D.B. (2008) Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett., v.271, pp.123–134.

    Article  Google Scholar 

  • Halls, H.C. and Fahrig, W.F. (1987) Dyke swarms and continental rifting: some concluding remarks. In: Halls, H.C. and Fahrig W.F. (Eds.), Mafic Dyke Swarms. Geol. Assoc. Canada Spec. Publ., v.34, pp.483–492.

    Google Scholar 

  • Hack, A.C. and Thompson, A.B. (2011) Density and viscosity of hydrous magmas and related fluids and their role in subduction zone processes. Jour. Petrol., v.52, pp.1333–1362.

    Article  Google Scholar 

  • Hawkesworth, C., George, R., Turner, S. and Zellmer, G. (2004) Time scales of magmatic processes. Earth Planet. Sci. Lett., v.218, pp.1–16.

    Article  Google Scholar 

  • Huppert, H.E. and Sparks, R.S.J. (1985a) Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet. Sci. Lett., v.74, pp.371–386.

    Article  Google Scholar 

  • Huppert, H.E. and Sparks, R.S.J. (1985b) Komatiites I: eruption and flow. Jour. Petrol., v.26, pp.94–725.

    Article  Google Scholar 

  • Jankovics, M.E., Dobosi, G., Embey-Isztin, A., Kiss, B., Sági, T., Harangi, S. and Ntaflos, T. (2013) Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin. Bull. Volcanol., v.75, pp.749–772.

    Article  Google Scholar 

  • Jankovics, M. E., Harangi, S., Németh, K., Kiss, B. and Ntaflos, T. (2015) A complex magmatic system beneath the Kissomlyó monogenetic volcano (western Pannonian Basin): evidence from mineral textures, zoning and chemistry. Jour. Volcanol. Geotherm. Res., v.301, pp.38–55.

    Article  Google Scholar 

  • Jing, Z. and Karato, S. (2012) Effect of H2O on the density of silicate melts at high pressures: static experiments and the application of a modified hardsphere model of equation of state. Geochim. Cosmochim. Acta,, v.85, pp.357–372.

    Article  Google Scholar 

  • Karki, B.B. Zhang, J. and Stixrude, L. (2013) First principles viscosity and derived models for MgO-SiO2 melt system at high temperature. Geophys. Res. Lett., v.40, pp.94–99.

    Article  Google Scholar 

  • Kelley, S.P. and Wartho, J-A. (2000) Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites. Science, v.289, pp.601–611.

    Article  Google Scholar 

  • Kerr, R.C. and Lister, J.R. (1991) The effects of shape on crystal settling and on the rheology of magmas. Jour. Geol., v.99, pp.457–467.

    Article  Google Scholar 

  • Klügel, A., Hansteen, T.H. and Schmincke, H.U. (1997) Rates of magma ascent and depths of magma reservoirs beneath La Palma (Canary Islands). Terra Nova, v.9, pp.117–121.

    Article  Google Scholar 

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Jour. Petrol., v.27, pp.745–750.

    Article  Google Scholar 

  • Leelanandam, C. (1989) The Prakasam alkaline province in Andhra Pradesh, India. Jour. Geol. Soc. India, v.34, pp.25–45.

    Google Scholar 

  • Lindsay, J.M., Trumbull, R.B. and Siebel, W. (2005) Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in southern Dominica, Lesser Antilles. Jour. Volcanol. Geotherm. Res., v.148, pp.259–294.

    Article  Google Scholar 

  • Lister, J.R. and Kerr, R.C. (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. Jour. Geophys. Res., v.96, pp.10049–10077.

    Article  Google Scholar 

  • Madhavan, V., Mallikharjuna Rao, J., Subrahmanyam, K., Krishna, S.G. and Leelanandam. C. (1989) Bedrock geology of Elchuru alkaline pluton, Prakasam district, Andhra Pradesh. In: Leelanandam, C. (Ed.), Alkaline Rocks. Mem. Geol. Soc. India, no.15, pp.189–205.

    Google Scholar 

  • Madhavan, V. and Mallikharjuna Rao, J. (1990) Petrology of olivine basalt dyke of lamprophyre affinity at Uppalapadu, Prakasam District, Andhra Pradesh. Jour. Geol. Soc. India, v.36, pp.493–501.

    Google Scholar 

  • Madhavan, V., Mallikharjuna Rao, J., Balaram, V. and Ramesh Kumar (1992) Geochemistry and petrogenesis of lamprophyres and associated dykes from Elchuru, Andhra Pradesh, India. Jour. Geol. Soc. India, v.40, pp.135–149.

    Google Scholar 

  • Marsh, B.D. (1981) On the crystallinity, probability of occurrence, and rheology of lavas and magmas. Contrib. Mineral. Petrol., v.78, pp.85–98.

    Article  Google Scholar 

  • Mattsson, H.B. (2012) Rapid magma ascent and short eruption durations in the Lake Natron-Engaruka monogenetic volcanic field (Tanzania): a case study of the olivine melilititic Pello Hill scoria cone. Jour. Volcanol. Geotherm. Res., v.247-248, pp.16–25

    Article  Google Scholar 

  • McBirney, A.R. and Murase, T. (1984) Rheological properties of magmas. Annu. Rev. Earth Planet. Sci., v.12, pp.337–357.

    Article  Google Scholar 

  • McKenzie, D. (2000) Constraints on melt generation and transport from Useries activity ratios. Chem. Geol. v.162, pp.81–94.

    Article  Google Scholar 

  • Melnik, O. and Sparks, R.S.J. (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. Jour. Geophys. Res., v.110, B02209, doi:https://doi.org/10.1029/2004JB003183

    Article  Google Scholar 

  • Michaut, C. (2011) Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on earth and the moon. Jour. Geophys. Res., v.116, B5, doi: https://doi.org/10.1029/2010JB008108.

    Article  Google Scholar 

  • Michaut, C., Baratoux, D. and Thorey, C. (2013) Magmatic intrusions and deglaciation at mid-latitude in the northern plains of Mars. Icarus, v. 225, pp.602–613.

    Article  Google Scholar 

  • Mysen, B.O. (1988) Structure & Properties of Silicate Melts. Elsevier, Amsterdam, pp.354.

    Google Scholar 

  • Nicholis, M.G. and Rutherford, M.J. (2004) Experimental constraints on magma ascent rate for the Crater Flat volcanic zone hawaiite. Geol. Soc. Amer., v.32, pp.489–492.

    Google Scholar 

  • Nisbet, E.G., Cheadle, M.J., Arndt, N.T. and Bickle, M.J. (1993) Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos, v.30, 291–307.

    Article  Google Scholar 

  • Olson, J. and Pollard D.D. (1989) Inferring paleostresses from natural fracture patterns: a new method. Geology, v.17, pp.345–348.

    Article  Google Scholar 

  • Pearce, J.A., Baker, P.E., Harvey, P.K. and Luff, I.W. (1995) Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich-Island Arc. Jour. Petrol., v.36, pp.1073–1109.

    Article  Google Scholar 

  • Peslier, A.H. and Luhr, J.F. (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet. Sci. Lett., v.242, pp.302–319.

    Article  Google Scholar 

  • Peslier, A.H., Woodland, A.B. and Wolff, J.A. (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta, v.72, pp.2711–2722.

    Article  Google Scholar 

  • Petford, N. (2009) Which effective viscosity? Mineral. Mag., v.73, pp.167–191.

    Article  Google Scholar 

  • Petford, N., Lister, J.R. and Kerr, R.C. (1994) The ascent of felsic magmas in dykes. Lithos, v.32, pp.161–168.

    Article  Google Scholar 

  • Philpotts, A.R. (1990) Principles of Igneous and Metamorphic Petrology, Prentice-Hall of India, New Delhi, 498p.

    Google Scholar 

  • Pinkerton, H. and Stevenson, R.J. (1992) Methods of determining the theological properties of magmas at subliquidus temperatures. Jour. Volcanol. Geotherm. Res., v.53, pp.47–66.

    Article  Google Scholar 

  • Pollard, D.D. and Muller, O.H. (1976) The effect of gradients in regional stress and magma pressure on the form of sheet intrusions in cross section. Jour. Geophys. Res., v.81, pp.975–984.

    Article  Google Scholar 

  • Pollard, D.D., Segall, P. and Delaney, P.T. (1982) Formation and interpretation of dilatant echelon cracks. Bull. Geol. Soc. Amer., v.93, pp.1291–1303.

    Article  Google Scholar 

  • Pollard, D.D., Delaney, P.T., Duffield, W.A. and Endo, E.T. (1983) Surface deformation in volcanic rift zones. Tectonophysics, v.94, pp.541–584.

    Article  Google Scholar 

  • Pollard, D.D. (1987) Elementary fracture mechanics applied to the structural interpretation of dykes. In: Halls, H.C. and Fahrig, W.F. (Eds.), Mafic Dyke Swarms. Geol. Assoc. Canada Spec. Paper., v.34, pp.5–24.

    Google Scholar 

  • Price, S.E., Russell, J.K. and Kopylova, M.G. (2000) Primitive magma from the Jericho Pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry. Jour. Petrol., v.41, pp.789–808.

    Article  Google Scholar 

  • Price, R.C., Gamble, J.A., Smith, I.E.M., Stewart, R.B., Eggins, S. and Wright, I.C. (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. Jour. Volcanol. Geotherm. Res., v.140, pp.1–24.

    Article  Google Scholar 

  • Rao, A.D.P., Rao, K.N. and Murthy, Y.G.K. (1987) Gabbro-anorthosite-pyroxenite complexes and alkaline rocks of Chimakurti-Elchuru area, Prakasam District, Andhra Pradesh. Records of Geol. Surv. India, v.116, pp.1–20.

    Google Scholar 

  • Rathna, K., Vijaya Kumar, K. and Ratnakar, J. (2000) Petrology of the dykes of Ravipadu, Prakasam Province, Andhra Pradesh, India. Jour. Geol. Soc. India., v.55, pp.339–412.

    Google Scholar 

  • Ratnakar, J. and Leelanandam, C. (1989) Petrology of alkaline plutons from the eastern and southern Peninsular India. In: Leelanandam, C. (Ed.), Alkaline Rocks. Mem. Geol. Soc. India., no.15, pp.145–176.

    Google Scholar 

  • Ray, A., Hatui, K., Paul, D.K., Sen, G., Biswas, S.K. and Das, B. (2016) Mantle xenolith-xenocryst-bearing monogenetic alkali basaltic lava field from Kutch Basin, Gujarat, Western India: estimation of magma ascent rate. Jour. Volcanol. Geotherm. Res., v.312, pp.40–52.

    Article  Google Scholar 

  • Rogers, R.D. and Bird, D.K. (1987) Fracture propagation associated with dike emplacement at the Skaergaard intrusion, East Greenland. Jour. Struct. Geol., v.9, pp.71–86.

    Article  Google Scholar 

  • Rutherford, M.J. and Hill, P.M. (1993) Magma ascent rates from amphibole breakdown: experiments and the 1980–1986 Mount St. Helens eruptions. Jour. Geophys. Res., v.98, pp.19667–19685.

    Article  Google Scholar 

  • Russell, J.K., Porritt, L., Lavallee, Y. and Dingwell, D.B. (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature, v.481, pp.352–356.

    Article  Google Scholar 

  • Sarkar, A. and Paul, D.K. (1998) Geochronology of the Eastern Ghats Precambrian Mobile Belt a review. Geol. Surv. India. Spec. Publ., v.44, pp.51–86.

    Google Scholar 

  • Scarfe, C.M., Mysen, B.O. and Virgo, D. (1987) Pressure dependence of the viscosity of silicate melts. In: Mysen, B.O. (Ed.), Magmatic Processes: Physicochemical Principles. Geochem. Soc., Spec. Publ., v.1, pp.59–67.

    Google Scholar 

  • Shaw, H.R. (1965) Comments on viscosity, crystal settling, and convection in granitic magmas. Amer. Jour. Sci., v.263, pp.120–152.

    Article  Google Scholar 

  • Shaw, H.R. (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Amer. Jour. Sci., v.272, pp.870–893.

    Article  Google Scholar 

  • Shaw, H.R. (1980) The fracture mechanism of magma transport from the mantle to the surface. In: Hargraves, R.B. (Ed.), Physics of Magmatic Processes. Princeton University Press, Princeton, New Jersey, pp.201–264.

    Google Scholar 

  • Sparks, R.S.J. (1993) Magma generation in the Earth. In: Hawkesworth C. and Wilson, C. (Eds.), Understanding the Earth. Cambridge University Press, Cambridge, pp.91–114

    Google Scholar 

  • Sparks, R.S.J. (2003) Dynamics of magma degassing. Geol. Soc. London Spec. Publ., v.213, pp.5–22.

    Article  Google Scholar 

  • Sparks, R.S.J., Baker, L., Brown, R.J., Field, M., Schumacher, J., Stripp, G. and Walters, A. (2006) Dynamical constraints on kimberlite volcanism. Jour. Volcanol. Geotherm. Res., v.155, pp.18–48.

    Article  Google Scholar 

  • Spera, F.J. (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenoliths-bearing mafic lavas. Contrib. Mineral. Petrol., v.88, pp.217–232.

    Article  Google Scholar 

  • Spera, F.J. (1986) Fluid dynamics of ascending magma and mantle metasomatic fluids. In: Menzies, M. and Hawkesworth, C. (Eds.), Mantle Metasomatism. Academic Press, London, pp.241–259.

    Google Scholar 

  • Subba Rao, T.V., Bhaskar Rao, Y.J., Sivaraman, T.V. and Gopalan, K. (1989) Rb-Sr age and petrology of Elchuru alkaline complex: implications to alkaline magmatism in the Eastern Ghat Mobile Belt. In: Leelanandam, C. (Ed.), Alkaline Rocks. Mem. Geol. Soc. India., no.15, pp.207–223.

    Google Scholar 

  • Taisne, B., Tait, S. and Jaupart, C. (2011) Conditions for the arrest of a vertical propagating dyke. Bull. Volcanol., v.73, pp.191–204.

    Article  Google Scholar 

  • Thomas, A.L. and Pollard, D.D. (1993) The geometry of echelon fractures in rock: implications from laboratory and numerical experiments. Jour. Struct. Geol., v.15, pp.323–334.

    Article  Google Scholar 

  • Ui, T., Kono, M., Hamano, Y., Monge, F. and Aota, Y. (1984) Reconstruction of a volcanic edifice using the dike swarm at Ocros, Peruvian Andes. Bull. Volcanol. Soc. Japan, v.29, pp. 285–296.

    Google Scholar 

  • Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschmidt, K. (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos, v.89, pp.447–477.

    Article  Google Scholar 

  • Vijaya Kumar, K. and Ratnakar, J. (2001) Petrogenesis of the Ravipadu gabbro pluton, Prakasam Alkaline Province, Andhra Pradesh. Jour. Geol. Soc. India, v.57, pp.113–140.

    Google Scholar 

  • Vijaya Kumar, K., Frost, C.D., Frost, B.R. and Chamberlain, K.R. (2007) The Chimakurthi, Errakonda, and Upplapadu plutons, Eastern Ghats Belts, India: an unusual association of tholeiitic and alkaline magmatism. Lithos, v.97, pp.30–57.

    Article  Google Scholar 

  • Vijaya Kumar, K. and Leelanandam, C. (2008) Evolution of the Eastern Ghats Belt, India: a plate tectonic perspective. Jour. Geol. Soc. India, v.72, pp.720–749.

    Google Scholar 

  • Vijaya Kumar, K. Ernst, W.G., and Leelanandam, C. (2011) Opening and closing of a Mesoproterozoic Ocean along the SE margin of India: textural, cathodoluminescence and SHRIMP analyses of zircon. Abstract V14B-07, Amer. Geophys. Union, Fall Meeting, San Francisco, USA.

    Google Scholar 

  • Wada, Y. (1994) On the relationship between dike width and magma viscosity. Jour. Geophys. Res., v.99, pp.17743–17755.

    Article  Google Scholar 

  • Wartho, J-A. and Kelley, S.P. (2003) 40Ar/39Ar ages in mantle xenolith phlogopites: determining the ages of multiple lithospheric mantle events and diatreme ascent rates in southern Africa and Malaita, Solomon Islands. Geol. Soc. London Spec. Publ., v.220, pp.231–248.

    Article  Google Scholar 

  • Whittington, A.G., Hellwig, B.M., Behrens, H., Joachim, B., Stechern, A. and Vetere, F. (2009) The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull. Volcanol., v.71, pp.185–199.

    Article  Google Scholar 

  • Wilson, L. and Head, J.W. (2007) An integrated model of kimberlite ascent and eruption. Nature, v.447, pp.53–57.

    Article  Google Scholar 

  • Wyllie, J.J., Voight, B. and Whitehead, J.A. (1999) Instability of magma flow from volatile-dependent viscosity. Science, v.285, pp.1883–1885.

    Article  Google Scholar 

  • Yamato, P., Tartese, R., Duretz, T. and May, D.A. (2012) Numerical modelling of magma transport in dykes. Tectonophysics, v.526-529, pp.97–109.

    Article  Google Scholar 

  • Zellmer, G.F., Hawkesworth, C.J., Sparks, R.S.J., Thomas, L.E., Harford, C.L., Brewer, T.S. and Loughlin, S.C. (2003) Geochemical evolution of the Soufrière Hills Volcano, Monserrat, Lesser Antilles volcanic arc. Jour. Petrol., v.44, pp.1349–1374.

    Article  Google Scholar 

  • Zimova, M. and Webb, S.L. (2006) The combined effects of chlorine and fluorine on the viscosity of alumina silicate melts. Geochim. Cosmochim. Acta, v.71, pp.1553–1562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijaya Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokandakar, G.J., Ghodke, S.S., Rathna, K. et al. Density, Viscosity and Velocity (Ascent Rate) of Alkaline Magmas. J Geol Soc India 91, 135–146 (2018). https://doi.org/10.1007/s12594-018-0827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0827-8

Navigation