Skip to main content
Log in

Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

This paper reports the results of our studies, the chemical analysis of thermal spring’s waters and their geological settings, the use of different statistical methods to evaluate the origin of the dissolved constituents of spring waters and the estimation of the reservoir temperature of the associated geothermal fields of the Guelma region, Algeria. A major component in 13 spring water samples was analyzed using various techniques. The waters of the thermal springs at Guelma basin vary in temperature between 20 and 94oC. Q-mode hierarchical cluster analysis suggests three groups. The water springs were classified as low, moderate and high salinity. Mineral saturation indices (SI) calculated from major ions indicate the spring waters are supersaturated with the most of the carbonate minerals, and all of the spring water samples are under-saturated with evaporite minerals. The thermal spring waters have a meteoric origin, and all samples are immature with strong mixing between warm and shallow waters, where the temperatures of reservoirs to which the thermal waters are related ranged between 64° and 124°C. The deep circulation of meteoric waters in the study area is supplied by the high geothermal gradient around 4.5°C per 100 m and reaches a high temperature before rising to the surface. The estimated circulation depths ranged from 1425 and 3542 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberto WD, del Pilar Da Ma, Valeria AMa, Fabiana PS, Cecilia HA, de los Ángeles BMa (2001) Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study:: Suquýìa River Basin (Córdoba–Argentina) Water Res., v.35, pp.2881–2894.

    Google Scholar 

  • Afsin, M., Kuscu. I., Elhatip, H. and Dirik, K. (2006) Hydrogeochemical properties of CO2-rich thermal–mineral waters in Kayseri, central Anatolia, Turkey. Environ. Geol., v.50(1), pp.24–35.

    Article  Google Scholar 

  • Alther, G.A. (1979) A simplified statistical sequence applied to routine water quality analysis: a case history Groundwater, v.17, pp.556–561.

  • Appelo, C. and Postma, D. (1996) Ion exchange and sorption Geochemistry, Groundwater and Pollution Balkema, pp.142–204.

    Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater (21st edi.). American Public Health Association, Washington, USA.

    Google Scholar 

  • Belkhiri, L., Boudoukha, A., Mouni L. and Baouz, T. (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria) Geoderma, v.159, pp.390–398

  • Schlumberger Oilfield Glossary (2016). http://ww.glossary.oilfield.slb.com/Terms/b/bht.aspx.

  • Bouchareb-Haouchine, F.Z., A. Issaad, et H. Bendhia (1994) Estimation and interpretation of geothermal gradient in Northern Algeria. Bull. Surv. Geol. Algeria, v.5, pp.69–74.

    Google Scholar 

  • Bouchareb-Haouchine, F.Z., Boudoukha, A. and Haouchine A. (2012) Hydrogéochimie et géothermométrie: apports à l’identification du réservoir thermal des sources de Hammam Righa, Algérie. Hydrolog. Sci. Jour., v.57, pp.1184–1195.

    Article  Google Scholar 

  • Bouchareb-Haouchine, F.Z. (2012) Etude Hydrochimique des Sources Thermales de l’Algérie du Nord-Potentialités Géothermiques (Doctoral dissertation, These Doctorat en Sciences, USTHB, Algiers, p 135).

    Google Scholar 

  • Chouabbi, A. (1987) Étude géologique de la région de Hammam N’Baïls (SE de Guelma, Constantinois, Algérie): un secteur des zones externes de la chaîne des Maghrébides, thèse de 3 cycle, université Toulouse-3, 123p.

    Google Scholar 

  • D’amore, F., Scandiffio, G. and Panichi, C. (1983) Some observations on the chemical classification of ground waters. Geothermics, v.12, pp.141–148.

    Article  Google Scholar 

  • Dareste De La Chavane, J.C. (1909) Carte détaillée de l’Algérie à 1:50 000, feuille n° 76, Gounod–La Mahouna. Publ. Serv. Carte géol. Algérie, France.

    Google Scholar 

  • Dareste De La Chavane, J.C. (1910) La région de Guelma, études spécial des terrains tertiaires, Lyon, France, 256p.

    Google Scholar 

  • Davisson, M.L., Presser, T.S. and Criss, R.E. (1994) Geochemistry of tectonically expelled fluids from the northern coast ranges, Rumsey Hills, California, USA, Geochim. Cosmochim Acta, v.58(7), pp.1687–1699.

    Article  Google Scholar 

  • Deleau, P. (1938) Etude géologique des régions de Jemmaps, Hammam Maskoutine et du col des oliviers. Thèse, Bulletin: Service de la Carte Géologique de l’Algérie, v.2(8), p.583.

    Google Scholar 

  • DIB Adjoul. H (1985) Le thermalisme de l’Est Algérien. Thèse de Doctorat 3 ème cycle, U.S.T.H.B., Alger, Algerie, 315p.

    Google Scholar 

  • DIB Adjoul. H (2008) Guide pratique des sources thermales de l’Est Algérien. Mémoires du Service Géologique National, no.15, p.106.

    Google Scholar 

  • Drever, J.I. (1997) The Geochemistry of Natural Waters, third ed. Prentice Hall, New Jersey. 436p.

  • Enel (1982). Etude de reconnaissance geothermique du constantinois oriental. Rapport général. Rapport interne, SONELGAZ, Algérie, 135p.

    Google Scholar 

  • Farnham, I.M., Stetzenbach, K.J., Singh, A.K., Johannesson, K.H. (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system Mathematical Geol., v.32, pp.943–968

  • Fournier, R. and Truesdell, A. (1973) An empirical Na? K? Ca geothermometer for natural waters. Geochim. Cosmochim. Acta, v.37, pp.1255–1275

    Article  Google Scholar 

  • Giggenbach, W. (1986) Graphical techniques for the evaluation of water/rock equilibration conditions by use of Na, K, Mg and Ca contents of discharge waters Proc 8th New Zealand Geothermal Workshop, pp.37–44

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta, v.52, pp.2749–2765

    Article  Google Scholar 

  • Guigue, S. (1940) Les sources thermominérales de l’Algérie. Tome I. Serv. Carte Géol. De l’Algérie, Algerie. 3ème série, 5ème fasc.

    Google Scholar 

  • Guigue, S. (1947) Les sources thermominérales de l’Algérie. Tome II. Serv. Carte Géol. De l’Algérie, Algerie. 3ème série, 9ème fasc.

    Google Scholar 

  • Güler, C. and Thyne, G.D. (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA Jour. Hydrol., v.285, pp.177–198.

    Article  Google Scholar 

  • Issaadi, L. (1992) Le thermalisme dans son cadre géostructural. Apport à la connaissance de la structure profonde de l’Algérie et de ses ressources géothermales, USTHB, Algiers, 267p.

    Google Scholar 

  • Kreamer, D.K., Hodge, V.F., Rabinowitz, I., Johannesson, K.H. and Stetzenbach, K.J. (1996) Trace element geochemistry in water from selected springs in Death Valley National Park, California. Ground Water, v.34, pp.95–103.

    Article  Google Scholar 

  • Lahonder, J.C. (1987) les séries ultratelliennes d’Algérie Nord-Orientale et les formations environnantes dans leur cadre structural., Paul Sabatier, Toulouse, France, 242p.

    Google Scholar 

  • Maouche, S. et al. (2013) Tectonic and hydrothermal activities in Debbagh, Guelma Basin, Eastern Algeria. In: EGU General Assembly Conference Abstracts, p.14204

    Google Scholar 

  • Meghraoui, M. (1988) Géologie des zones sismiques du Nord de l’Algérie. Paléosismologie, Tectonique Active et Synthèse sismotectonique, Paris-Sud Orsay, France, Paris, 362p.

    Google Scholar 

  • Meng, S.X. and Maynard, J.B. (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state, Brazil Jour. Hydrol., v.250, pp.78–97 doi: 10.1016/S0022-1694(01)00423-1

    Article  Google Scholar 

  • Raoult, J.F. (1974) Géologie du centre de la chaîne nummidique (nord du constantinois, Algérie), Paris, France, 156 pp.

    Google Scholar 

  • Rezig, M. and Marty, B. (1995) Geothermal study of the northeastern part of Algeria Proc. World Geothermal Congress, v.2, pp.1151–1155

    Google Scholar 

  • Simeonov, V., Stratis, JA., Samara, C., Zachariadisb, G., Voutsa, D., Anthemidis, A., Sofoniou, M. and Kouimtzis, TH (2003) Assessment of the surface water quality in Northern Greece. Water Res, v.37(17), pp.4119–4124.

    Article  Google Scholar 

  • STATISTICA® 5.0 for Windows, (1998) StatSoft, Inc., Tulsa OK.U SDA, Natural Resources Conservation Services, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No.436, p.871.

  • Swanson, S.K., Bahr, J.M., Schwar, M.T. and Potter, K.W. (2001) Two-way cluster analysis of geochemical data to constrain spring source waters. Chemical Geol., v.179, pp.73–91.

    Article  Google Scholar 

  • Takherist, D. and Lesquer, A. (1989) Mise en évidence d’importantes variations régionales du flux de chaleur en Algérie. Canadian Jour. Earth Sci., v.26(4), pp.615–626.

    Article  Google Scholar 

  • Verdeil, P. (1982) Algerian thermalism in its geostructural setting, how hydrogeology has helped the elucidation of Algeria’s deep-seated structure. Jour. Hydro., v.56, pp.107–117.

    Article  Google Scholar 

  • Vila, J.M. (1980) La chaine alpine d’Algérie orientale et des confins algérotunisiens Pierre et Marie Curie, Paris, 671p.

    Google Scholar 

  • Ward, J.H. (1963) Hierarchical grouping to optimize an objective function Jour. Amer. Statis. Assoc., v.58, pp.236–244.

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, v.4, 3rd ed., WHO Geneva.

    Google Scholar 

  • Williams, R.E. (1982) Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources Groundwater, v.20, pp.466–478.

  • Yidana, S.M., Ophori, D. and Banoeng-Yakubo, B. (2008) A multivariate statistical analysis of surface water chemistry data—The Ankobra Basin, Ghana. Jour. Environ. Managmt., v.86, pp.80–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouaicha Foued.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foued, B., Hénia, D., Lazhar, B. et al. Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J Geol Soc India 90, 226–232 (2017). https://doi.org/10.1007/s12594-017-0703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0703-y

Navigation