Skip to main content
Log in

The effect of the textural characteristics on the engineering properties of the basalts from Yozgat region, Turkey

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Engineering properties of rocks vary as they are heterogeneous materials by nature because of mineralogical composition, texture, porosity, and alteration, etc. This study focuses on the investigation of the relationship between internal structure and engineering parameters of basalt samples by digitizing the textural properties. Thin sections studies of basalts were made into three groups: aphanitic, amygdaloidal, and vesicular on the basis of texture. Further, the textural properties were digitized in thin sections and the texture coefficient (TC) of each group was calculated. Uniaxial compressive strength, dry unit weight, point load strength index, Schmidt hammer rebound, and P-wave velocity of the samples were determined in the laboratory. Simple regression analyses were performed using the laboratory results incorporating first TC and engineering parameters and the second phase of the analysis focused on the relationship between uniaxial compressive strength and the rest of the parameters of samples with different texture coefficients. The highest texture coefficient was found to be 0.50 in aphanitic basalts while vesicular basalts have the lowest TC of 0.37. As the TC increases, rock strength increases. Strong-very strong correlations between uniaxial compressive strength and the rest of the engineering parameters of aphanitic and amygdaloidal-basalts with a TC of 0.50 and 0.45 are in agreement with the findings in the literature while there are no meaningful correlations between uniaxial strength and the aforementioned parameters except dry unit weight in vesicular basalts. These results indicate that the presence of empty pores in vesicular basalts reduced the uniaxial compressive strength and TC by increasing the heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbay, S. (2016) Geology and petrology of Musabeyli-Sorgun (YOZGAT) volcanic rocks. Master’s thesis, Ankara University, Turkey, 145 p (in Turkish).

    Google Scholar 

  • Akce, M.A. and Kadioglu, Y.K. (2005) Petrology of leucogranites from the northern part of Yozgat batholith. Geol. Bull. Turkey., Vol. 48/2, pp.1–20 (in Turkish).

    Google Scholar 

  • Al-Harthi, A.A., Al-Amri, R.M. and Shehata, W.M. (1999) The porosity and engineering properties of vesicular basalt in Saudi Arabia. Engg. Geol., v.54 (3-4), pp.313–320.

    Article  Google Scholar 

  • Alpaslan, M. and Temel, A. (2000) Petrographic and Geochemical Evidence for Magma Mixing and Crustal Contamination in the Post-Collisional Calc-AlkalineYozgatVolcanics, Central Anatolia, Turkey, Int. Geol. Rev. v.42/9, pp.850–863.

    Article  Google Scholar 

  • American Society for Testing and Materials (2001) Standard practices for preparing rock core specimens and determining dimensional and shape tolerances. ASTM, D4543.

    Google Scholar 

  • Barbour, T.G., Atkinson, R.H. and Ko, H.Y. (1979) Relationship of mechanical, index and mineralogical properties of coal measure rock. 20th Symp. Rock Mech., Austin, pp.189–198.

    Google Scholar 

  • Basu, A. and Kamran, M. (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int. Jour. Rock Mech. Min. Sci., v.47, pp.823–828.

    Article  Google Scholar 

  • Bell, FG. (1978) The physical and mechanical properties of the Fell sandstones, Northumberland, England. Engg. Geol., v.12, pp.1–29.

    Article  Google Scholar 

  • Brace, W.F. (1961) Dependence of fracture strength of rocks on grain size. 4th Symp. Rock Mech, Univ. Park, Penn., pp.99–103.

    Google Scholar 

  • Cashman, K.V. and Kauahikaua, J.P. (1997) Reevaluation of vesicle distributions in basaltic lava flows. Geology, v.25, pp.419–422.

    Article  Google Scholar 

  • Cevýk, A., Akcapinar Sezer, E., Cabalar, A. F. and Gokceoglu, C. (2011) Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network.Appl. Soft Comput., v.11, pp.2587–2594.

    Article  Google Scholar 

  • Deere, D.U. and Miller, R.P. (1966) Engineering classification and index properties for intact rocks. Tech Rep Air Force Weapons Lab, New Mexico, no AFNL-TR, pp.65–116.

    Google Scholar 

  • Diamantis, K., Gartzos, E. and Migiros, G. (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece. Test results and empirical relations: Eng. Geol., v.108, pp.199–207.

    Google Scholar 

  • Diamantis, K., Bellas, S., Migiros, G. and Gartzos, E. (2011) Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the central Greece. Geotech. Geol. Engg., v.29, pp.1049–1062.

    Article  Google Scholar 

  • Dincer, I., Acar, A., Cobanoglu, I. and Uras, Y. (2004) Correlation between Schmidt hardness, uniaxial compressive strength and Young’s modulus for andesites, basalts and tuffs. Bull. Eng. Geol. Env., v.63, pp.141–148.

    Article  Google Scholar 

  • Duraiswami, R.A., Gadpallu, P., Tahira, Shaikh, T.N. and Cardin, N. (2014) Pahoehoe-a’a transitions in the lava flow fields of the western Deccan Traps, India-implications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy. Jour. Asian Earth Sci. v.84, pp.146–166.

    Google Scholar 

  • Entwisle, D.C., Hobbs, P.R.N., Jones, L.D., Gunn, D. and Raines, M.G. (2005) The relationship between effective porosity, uniaxial compressivestrength and sonic velocity of intact Borrowdale volcanic group core samples from Sella field. Geotech. Geol. Engg., v.23, pp.793–809

    Article  Google Scholar 

  • Erdogan, B., Akay, E. and Ugur, S. (1996) Geology of the Yozgat region and evolution of the collisional Çankiri basin. Int. Geol. Rev., v.38, pp.788–806.

    Article  Google Scholar 

  • Ersoy, A. and Waller, M.D. (1995) Textural characterization of rocks.Eng. Geol., v.39, pp.123–136.

    Google Scholar 

  • Fener, M., Kahraman, S., Bilgil, A. and Gunaydin, O (2005) A Comparative Evaluation of Indirect Methods to Estimate the Compressive Strength of Rocks. Rock Mech. Rock Engg., v.38(4), pp.329–343.

    Article  Google Scholar 

  • Fourmaintraux, D. (1976) Characterization of rocks laboratory tests. In: Panet, M. (Ed.), La Mechanique des roches applique aux ouvrges du genie civil. Ecole Nationale des Pontset Chaussees, Paris, (chapter IV).

    Google Scholar 

  • Gokceoglu, C. (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engg. Geol., v.66(1–2), pp.39–51.

    Article  Google Scholar 

  • Gokceoglu, C. and Zorlu, K. (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engg. Geol., v.17, pp.61–72.

    Google Scholar 

  • Goodman, R. E. (1993) Engineering Geology. Rock in Engineering Construction: Wiley, NY, 432 p.

    Google Scholar 

  • Goodman, R.E. (1998) Introduction to Rock Mechanics. 2nd ed. John Wiley and Sons, NY.

    Google Scholar 

  • Goncuoglu, M.C., Toprak, V., Erler, A. and Kuscu, I. (1991) Orta Anadolu Bati Kesiminin Jeolojisi, Bölüm 1, Güney Kesim.TPAO rap. No 2909, 176 pp (In Turkish, unpublished)

    Google Scholar 

  • Gupta, V. and Sharma, R. (2012) Relationship between textural, petrophysical and mechanical properties of quartzites: a case study from northwestern Himalaya. Engg. Geol., v.135–136, pp.1–9.

    Article  Google Scholar 

  • Handing, J. and Hager, R.V. (1957) Experimental deformation of sedimentary rock under a confining pressure.A.A.P.G., v.41, pp.1–50.

    Google Scholar 

  • Hawkýns, A.B. (1998) Aspects of rock strength. Bull. Engg. Geol. Environ., v.57, pp.17–30.

    Article  Google Scholar 

  • Howarth, D.F. and Rowlands, J.C. (1986) Development of an index to quantify rock texture for qualitative assessment to intact rock specimens. Geotech. Test. Jour., v.9(4), pp.169–179.

    Article  Google Scholar 

  • Irfan, T.Y. (1996) Mineralogy, fabric properties, and classification of weathered granites in Hong Kong.Q. Jour. Eng. Geol. Hydrogeol., v.29, pp.5–35.

    Article  Google Scholar 

  • International Society for Rock Mechanics (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring.1974–2006. In: Ulusay, Hudson (Eds.), Suggested methods prepared by the commission on testing methods, ISRM. ISRM Turkish National Group, Ankara, Turkey, 628 pp.

    Google Scholar 

  • Jeng, F.S., Weng, M.C., Lin, M.L. and Huang, T.H. (2004) Influence of petrographic parameters on geotechnical properties of Tertiary sandstones from Taiwan: Eng. Geol., v.73, pp.71–91.

    Google Scholar 

  • Kahraman, S. (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. Jour. Rock Mech. Min. Sci., v.38, pp.981–994.

    Article  Google Scholar 

  • Kahraman, S., Gunaydin, O. and Fener, M. (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int. Jour. Rock Mech. Min. Sci., v.42(4), pp.584–589.

    Article  Google Scholar 

  • Kahraman, S. and Gunaydýn, O. (2009) The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull. Eng. Geol. Environ., v.68, pp.345–353.

    Article  Google Scholar 

  • Karakul, H., Ulusay, R. and Isik, N. S. (2010) Empirical models and numerical analysis for assessing strength anisotropy based on block punch index and uniaxial compression tests. Int. Jour. Rock Mech. Min. Sci., v.47, pp.657–665.

    Article  Google Scholar 

  • Kayabali, K. and Selcuk, L. (2010) Nail penetration test for determining the uniaxial compressive strength of rock. Int. Jour. Rock Mech. Min. Sci., v.47, pp.265–271.

    Article  Google Scholar 

  • Ketýn, I. (1955) Yozgat bölgesinin jeolojisive Orta Anadolumasi finintektonik durumu. Bull. Geol. Soc. Turkey, v.6, pp.1–40 (in Turkish).

    Google Scholar 

  • Kilic¸ A. and Teymen, A. (2008) Determination of mechanical properties of rocks using simple methods. Bull. Engg. Geol. Environ. v.67, pp.237–244.

    Google Scholar 

  • Korkanc, M. and Tugrul, A. (2004) Evaluation of selected basalts from Nigde, Turkey, as source of concrete aggregate. Engg. Geol., v.75, pp.291–307.

    Article  Google Scholar 

  • Mendes, F.M., Aires-Barros, L. and Rodrigues, F.P. (1966) The use of modal analysis in the mechanical characterization of rock masses.1st Internat. Congress Rock Mechanics., Lisbon, v.1, pp.217–223.

    Google Scholar 

  • Merrýam, R., Rieke, H H. and Kim, Y.C. (1970) Tensile strength related to mineralogy and texture of some granitic rocks. Engg. Geol., v.4, pp.155–160.

    Article  Google Scholar 

  • Onodera, T.F. and Ashoka, K.H.M. (1980) Relation between texture and mechanical properties of crystalline rocks. Bull. Int. Assoc. Engg. Geol., v.22, pp.173–177.

    Google Scholar 

  • Ozturk, C. A. and Nasuf, E. (2013) Strength classification of rock material based on textural properties. Tunn.Undergr. Sp. Tech., v.37, pp.45–54.

    Article  Google Scholar 

  • Pomonis, P., Rigopoulos, I., Tsikouras, B. and Hatzipanagiotou, K. (2007) Relationships between petrographic and physico-mechanical properties of basic igneous rocks from the Pindos ophiolitic complex, NW Greece. Bull. Geol. Soc. Greece., v.4(2), pp.947–958.

    Google Scholar 

  • Prikrly, R. (2006) Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Engg. Geol., v.87, pp.149–162.

    Article  Google Scholar 

  • Rýgopoulos, I., Tsikouras, B., Pomonis, P. and Hatzipanagýotou, K. (2010) The influence of alteration on the engineering properties of dolerites: The examples from the Pindos and Vourinos ophiolites (northern Greece). Int. Jour. Rock Mech. Min. Sci., v.47, pp.69–80.

    Article  Google Scholar 

  • Ruffolo, R. M. and Shakoor, A. (2009) Variability of unconfined compressive strength in relation to number of test samples. Engg. Geol., v.108, pp.16–23.

    Article  Google Scholar 

  • Sengor, A.M.C. and Yilmaz, Y. (1981) Tethyan evolution of Turkey, A plate tectonic approach. Tectonophysics., v.75, pp.181–241.

    Article  Google Scholar 

  • Shakoor, A. and Bonelli, R.E. (1991) Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Bull. Assoc. Eng. Geologists, v.28, pp.55–71.

    Google Scholar 

  • Sharma, P.K. and Singh, T.N. (2008) A Correlation between P-Wave Velocity, Impact Strength Index, Slake Durability Index and Uniaxial Compressive Strength. Bull. Engg. Geol. Environ., v.67, pp.17–22.

    Article  Google Scholar 

  • Sonmez, H., Tuncay, E. and Gokceoglu, C. (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Internat. Jour. Rock Mech. Min. Sci., v.41(5), pp.717–729.

    Article  Google Scholar 

  • Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E.and Nefeslioglu, H.A. (2006) Estimating the uniaxial compressive strength of a volcanic bimrock. Int. Jour. Rock Mech. Min. Sci., v.43, pp.554–561.

    Article  Google Scholar 

  • Statistical Package for Social Sciences (1998) SPSS, SPSS Inc., USA, 562p.

    Google Scholar 

  • Tsýambaos, G. and Sabatakakis, N. (2004) Considerations on strength of intact sedimentary rocks. Engg. Geol., v.72, pp.261–273.

    Article  Google Scholar 

  • Tandon, R.S. and Gupta, V. (2013) The control of mineral constituents and textural characteristics on the petrophysical and mechanical (PM) properties of different rocks of the Himalaya. Engg. Geol., v.153, pp.125–143.

    Article  Google Scholar 

  • Tugrul, A. and Zarif, I.H. (1999) Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey. Engg. Geol., v.51, pp.303–317.

    Article  Google Scholar 

  • Ulusay, R., Tureli, K. and Ider, M.H. (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engg. Geol., v.7, pp.135–157.

    Article  Google Scholar 

  • Williams, H. (1982) Petrography. W. H. Freeman & Company, San Francisco, p. 369.

    Google Scholar 

  • Yagiz, S. (2008) Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Engg. Geol. Environ., v.68, pp.55–63.

    Article  Google Scholar 

  • Yilmaz, I. and Sendir, H. (2002) Correlation of Schmidt hammer rebound number with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Engg. Geol., v.66, pp.211–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Kolay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolay, E., Baser, T. The effect of the textural characteristics on the engineering properties of the basalts from Yozgat region, Turkey. J Geol Soc India 90, 102–110 (2017). https://doi.org/10.1007/s12594-017-0669-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0669-9

Navigation