Skip to main content
Log in

Estimation of dolomite formation: Dolomite precipitation and dolomitization

  • Published:
Journal of the Geological Society of India

Abstract

Reactive-transport models are developed here that produce dolomite via two scenarios: primary dolomite (no CaCO3 dissolution involved) versus secondary dolomite (dolomitization, involving CaCO3 dissolution). Using the available dolomite precipitation rate kinetics, calculations suggest that tens of meters of thick dolomite deposits cannot form at near room temperature (25-35°C) by inorganic precipitation mechanism, though this mechanism will provide dolomite aggregates that can act as the nuclei for dolomite crystallization during later dolomitization stage. Increase in supersaturation, Mg+2/Ca+2 ratio and CO -23 on the formation of dolomite at near room temperature are subtle except for temperature.This study suggests that microbial mediation is needed for appreciable amount of primary dolomite formation. On the other hand, reactive-transport models depicting dolomitization (temperature range of 40 to 200°C) predicts the formation of two adjacent moving coupled reaction zones (calcite dissolution and dolomite precipitation) with sharp dolomitization front, and generation of >20% of secondary porosity. Due to elevated temperature of formation, dolomitization mechanism is efficient in converting existing calcite into dolomite at a much faster rate compared to primary dolomite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AHARONOV, E., SPIEGELMAN, M. and KELEMEN, P. (1997) Threedimensional flow and reaction in porous media. Jour. Geophys. Res., v.102(B7), pp.14821–14834.

    Article  Google Scholar 

  • AL-HELAL, A.B., WHITAKER, F.F. and XIAO, Y. (2012) Reactive transport modeling of brine reflux: dolomitization, anhydrite precipitation, and porosity evolution. Jour. Sediment. Res., v. 82(3), pp.196–215.

    Article  Google Scholar 

  • ARVIDSON, R.S. and MACKENZIE, F.T. (1997) Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution. Aquatic Geochemistry, v.2(3), pp.273–298.

    Article  Google Scholar 

  • ARVIDSON, R.S. and MACKENZIE, F.T. (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state. Amer. Jour. Sci., v.299(4), pp.257–288.

    Article  Google Scholar 

  • BADIOZAMANI, K. (1973) Dorag dolomitization model–application to the middle Ordovician of Wisconsin. Jour. Sediment. Petrol., v.43(4), pp.965–984.

    Google Scholar 

  • BAKER, P.A., CROSS, S.L. and BURNS, S.J. (1994) Geochemistry of carbonate nodules and cements and implications for hydrothermal circulation, Middle Valley, Juan de Fuca Ridge. In: Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), Proc. Ocean Drilling Program, Scientific Results, 139, pp.313–328.

    Google Scholar 

  • BANERJEE, A. and MERINO, E. (2011) Terra rossa genesis by replacement of limestone by kaolinite. III. Dynamic quantitative model. Jour. Geol., v.119(3), pp.259–274.

    Google Scholar 

  • BARNES, I. and BACK, W. (1964) Dolomite solubility in ground water. USGS Prof. Paper 475-D, v.160, pp.179–180.

    Google Scholar 

  • BLATT, H., MIDDLETON, G. and MURRAY. R. (1980) Origin of Sedimentary Rocks, 2nd edition. Prentice-Hall.

    Google Scholar 

  • BUSENBERG, E. and PLUMMER, N.L. (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. In: F.A. Mumpton (Ed.), Studies in diagenesis. USGS Bull., no.1578, pp.139–168.

    Google Scholar 

  • CARMICHAEL, S.K., FERRY, J.M. and MCDONOUGH, W.F. (2008) Formation of replacement dolomite in the Latemar Carbonate Buildup, Dolomites, Northern Italy: Part 1. Field relations, mineralogy, and geochemistry. Amer. Jour. Sci., v.308(7), pp.851–884.

    Google Scholar 

  • CHAKRABARTI, G., SHOME, D., KUMAR, S., ARMSTRONG-ALTRIN, J.S. and SIAL, A.N. (2011) Carbon and oxygen isotopic variations in stromatolitic dolomites of Palaeoproterozoic Vempalle Formation, Cuddapah Basin, India. Carbonates and Evaporites, v.26(2), pp. 181–191.

    Article  Google Scholar 

  • CHEN, D., QING, H. and YANG C. (2004) Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology, v.51(5), pp.1029–1051.

    Article  Google Scholar 

  • COMPTON, J.S. (1988) Degree of supersaturation and precipitation of organogenic dolomite. Geology, v.16(4), pp.318–321.

    Article  Google Scholar 

  • CONSONNI, A., RONCHI, P., GELONI, C., BATTISTELLI, A., GRIGO, D., BIAGI, S., GHERARDI, F. and GIANELLI, G. (2010) Application of numerical modelling to a case of compaction-driven dolomitization: a Jurassic paleo-high in the Po Plain, Italy. Sedimentology, v.57(1), pp. 209–231.

    Article  Google Scholar 

  • CURTIS, R.E., EVANS, G., KINSMAN, D.J.J. and SHEARMAN, D.J. (1963) Association of dolomite and anhydrite in the recent sediments of the Persian Gulf. Nature, v.197(4868), pp.679–680.

    Article  Google Scholar 

  • DAVIES, G.R. and SMITH, L.B.. (2006) Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull., v.90(11), pp.1641–1690.

    Article  Google Scholar 

  • DOCKAL J.A. (1988) Thermodynamic and kinetic description of dolomitization of calcite and calcitization of dolomite (dedolomitization). Carbonates and Evaporites, v.3(2), pp.125–141.

    Article  Google Scholar 

  • DOMENICO, S.N. (1983) Sandstone and limestone porosity determination from shear and compressional wave velocity. Bull. Australian Soc. Explor. Geophys., v.14(4), pp.81–90.

    Article  Google Scholar 

  • FREEZE, R.A. and CHERRY, J.A. (1979) Groundwater, Prentice-Hall, 604p.

    Google Scholar 

  • GARRELS, R.M. and CHRIST, C.L. (1965) Solutions, Minerals and Equilibria: New York, Harper and Row, 450p.

    Google Scholar 

  • GARRELS, R.M. (1960) Mineral Equilibria: New York, Harper and Brothers, 254p.

    Google Scholar 

  • GASPARRINI, M., BECHSTADT, T., BONI, M. (2006) Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan Evolution. Marine Petrol. Geol., v. 23(5), pp.543–568.

    Article  Google Scholar 

  • GAUTELIER, M., SCHOTT, J.and OELKERS, E.H. (2007) An experimental study of dolomite dissolution rates at 80! as a function of chemical affinity and solution composition. Chemical Geol., v.242(3-4), pp.509–517.

    Article  Google Scholar 

  • GUZZY-ARREDONDO G. S., MURILLO-MUÑETÓN, G., DANTE JAIME MORÁN-ZENTENO, D. J., GRAJALES-NISHIMURA, J. M., MARTÍNEZIBARRA, R. and SCHAAF, P. (2007) High-temperature dolomite in the Lower Cretaceous Cupido Formation, Bustamante Canyon, northeast Mexico: petrologic, geochemical and microthermometric constraints. Revista Mexicana de Ciencias Geológicas, v.24(2), pp.131–149.

    Google Scholar 

  • HASS, J., BUDAI, T., GYORI, O. and KELE, S. (2014) Multiphase partial and selective dolomitization of Carnian reef limestone (Transdanubian Range, Hungary). Sedimentology, v.61(3), pp.836–859.

    Article  Google Scholar 

  • HELGESON, H.C., GARRELS, R.M. and MACKENZIE, F.T. (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications. Geochim. Cosmochim. Acta, v.33(4), pp.455–481.

    Article  Google Scholar 

  • HOLLAND, H. D., KIRSSIPU, T. V., HUEBNER, J. S., OXBURG, U. M. (1964) On some aspects of the chemical evolution of cave waters. Jour. Geol., v.72(1), pp.36–67.

    Article  Google Scholar 

  • HSU, K. J. (1963) Solubility of dolomite and composition of Florida ground waters. Jour. Hydrol., v.1(4), pp.288–310.

    Article  Google Scholar 

  • JOHNSON, J., OELKERS, E.H. and HELGESON, H.C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences, v.18(7), pp.899–947.

    Article  Google Scholar 

  • JONES, G.D. and XIAO, Y. (2005) Dolomitization, anhydrite cementation and porosity evolution in a reflux system: Insights from reactive transport models. AAPG Bull., v.89(5), pp.577–601.

    Article  Google Scholar 

  • JONES, G.D., SMART, P.L., WHITAKER, F.F., ROSTRON, B.J., and MACHEL, H.G. (2003) Numerical modelling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada sedimentary basin. AAPG Bull., v. 87(8), pp.1273–1298.

    Article  Google Scholar 

  • KACZMAREK, S.E. and SIBLEY, D.F. (2007) A comparison of nanometer-scale growth and dissolution features on natural and synthetic dolomite crystals: implications for the origin of dolomite. Jour. Sediment. Res., v.77, pp.424–432.

    Article  Google Scholar 

  • KELTS, K. and MCKENZIE, J. (1982) Diagenetic dolomite formation in Quaternary anoxic diatomaceous muds of Deep Sea Drilling Project Leg 64, Gulf of California. In: J.R. Curray, D.G. Moore, et al., (Eds.) Initial Reports of the Deep Sea Drilling Project, v.64, pp.553–569. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • KRAMER, J.R. (1959) Correction of some earlier data on calcite and dolomite in sea water. Jour. Sediment. Petrol., v.29(3), pp.465–467

    Google Scholar 

  • LAND, L.S. (1973) Holocene meteoric dolomitization of Pleistocene limestones, North Jamaica. Sedimentology, v.20(3), pp.411–424.

    Article  Google Scholar 

  • LAND, L.S. (1980) The isotopic and trace-element geochemistry of dolomite: The state of the art. In: Zenger, D., Dunham, J. B., Ethington, R. L. (Eds.), Concepts and models of dolomitization. SEPM Spec. Publ., v.28, pp.87–110.

    Chapter  Google Scholar 

  • LASAGA, A. (1984) Chemical kinetics of water-rock interactions. Jour. Geophys. Res., v.89(B6), pp.4009–4025.

    Article  Google Scholar 

  • LIPPMANN, F.(1973) Sedimentary Carbonate Minerals. Springer-Verlag, NewYork, 228p.

  • LIPPMANN, F. (1982) Stable and metastable solubility diagrams for the system CaCO3–MgCO3–H2O at ordinary temperatures. Bull. Mineral, v.105, pp.273–279.

    Google Scholar 

  • MACHEL, H.G. (2004) Concepts and models of dolomitization: a critical reappraisal. In: C.J.R. Braithwaite, G. Rizzi, and G. Darke, (Eds.), The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geol. Soc. London Spec. Publ., no.235, pp.7–63.

    Google Scholar 

  • MAGENHEIM, A.J. and GIESKES, J.M. (1992) Hydrothermal discharge and alteration in near surface sediments from the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta, v.56(6), pp.2329–2338.

    Article  Google Scholar 

  • MCKENZIE, J.A. and VASCONCELOS, C. (2009) Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology, v.56(1), pp.205–219.

    Article  Google Scholar 

  • MEISTER, P., GUTJAHR, M., FRANK, M., BERNASCONI, S.M., VASCONCELOS, C. and MCKENZIE, J.A. (2011) Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, v.39(6), pp.563–566.

    Article  Google Scholar 

  • MERINO, E. and CANALS, A. (2011) Self-accelerating dolomite for calcite replacement: self organized dynamics of burial dolomitization and associated mineralization. Amer. Jour. Sci., v.311(7), pp.573–607.

    Article  Google Scholar 

  • MORSE, J.W. and MACKENZIE, F.T. (1990) Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam, 707p.

    Google Scholar 

  • MORSE, J.W., WANG, Q. and TSIO, M. Y. (1997) Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology, v.25(1), pp.85–87.

    Article  Google Scholar 

  • MORSE, J.W., ARVIDSON, R.S. and LUTTGE, A. (2007) Calcium carbonate formation and dissolution. Chemical Rev., v.107(2), pp.342–381.

    Article  Google Scholar 

  • ORTOLEVA, P., MERINO, E., MOORE, C. and CHADAM, J. (1987) Geochemical self-organization I: Reaction-transport feedbacks and modeling approach. Amer. Jour. Sci., v.287(10), pp. 979–1007.

    Article  Google Scholar 

  • PALANDIR, J.L. and KHARAKA, Y.K. (2004) A compilation of parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open File Report 2004-1068, 64p.

    Google Scholar 

  • PARKER, V.B., WAGMAN, D.D. and EVANS, W.H. (1976) Selected values of chemical thermodynamic properties: National Bureau of Standards Technical Note 270-6, pp. 106.

    Google Scholar 

  • POKROVSKY, O.S. and SCHOTT, J. (2001) Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. Amer. Jour. Sci., v.301(7), pp.597–626.

    Article  Google Scholar 

  • PETERSON, M.N.A., BIEN, G.S. and BERNER, R.A. (1963) Radiocarbon studies of recent dolomite from Deep Spring Lake, California. Jour. Geophys. Res., v.68(24), pp.6493–6505.

    Article  Google Scholar 

  • PICHLER, T. and HUMPHREY, J. D. (2001) The formation dolomite in island-arc sediments due to gas-seawater-sediment interaction. Jour. Sediment. Res., v.71(3), pp.394–399.

    Article  Google Scholar 

  • PLUMLEE, G.S., LEACH, D.L., HOFSTRA, A.H., LANDIS, G.P., ROWAN, E.L. and VIETS, J.G. (1994) Chemical reaction path modeling of ore deposition in Mississippi Valley–Type Pb–Zn deposits of the Ozark region, United-States midcontinent. Econ. Geol., v.89(6), pp.1361–1383.

    Article  Google Scholar 

  • Plummer, L.N. (1975) Mixing of seawater with calcium carbonate groundwaters. Geol. Soc. Amer. Mem., v.42, pp.219–236.

    Google Scholar 

  • PUTNIS, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag., v.66(5), pp.689–708.

    Article  Google Scholar 

  • PUTNIS, A. (2009) Mineral Replacement Reactions. In: Oelkers, E. H., and Schott, J., (Eds.), Thermodynamics and Kinetics of Water-Rock Interaction: Reviews in Mineralogy and Geochemistry, v. 70, pp. 87–124.

    Google Scholar 

  • ROBERTS, J.A., KENWARD, P.A., FOWLE, D.A., GOLDSTEIN, R.H., GONZÁ LEZ, L.A. and MOORE, D.S. (2013) Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc. National Acad. Sci., v.110(36), pp.14540–14545.

    Article  Google Scholar 

  • ROBERTS, J.A., BENNETT, P.C., GONZALEZ, L.A., MACPHESON, G.L. and MILLIKEN, K.L. (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology, v.32(4), pp.277–280.

    Article  Google Scholar 

  • ROBIE, R.A., HEMINGWAY, B.S. and FISHER, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 °K and 1 bar (105 pascal) pressure and at higher temperatures. USGS Bull., no.1452, pp. 456.

    Google Scholar 

  • RONCHI, P., ORTENZI, A., SARTORIO, D., SCOTTI, P., PREVIDE MASSARA, E., MARAGLIULO, C., JADOUL, F. and CIRILLI, S. (2005) Analysis of a Multistage Dolomitization in the Early Jurassic Platform of Lombardy Southern Alps as an Analogue of Po Valley Reservoirs (Northern Italy). Abtract AAPG Conference, Paris, September 2005.

  • ROSEN, M.R., MISER, D.E., STARCHER, M.A. and WARREN, J.K. (1989) Formation of dolomite in the Coorong region, South Australia. Geochim. Cosmochim. Acta, v.53(3), pp.661–669.

    Article  Google Scholar 

  • SANCHEZ-ROMAN, M., VASCONCELOS, C., SCHMID, T., DITTRICH, M., MCKENZIE, J.A., ZENOBI, R. and RIVADENEYRA, M.A. (2008) Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology, v.36(11), pp.879–882.

    Article  Google Scholar 

  • SKINNER, H.C.W., SKINNER, B.J. and RUBIN, M. (1963) Age and accumulation rate of dolomite bearing carbonate sediments in south Australia. Science, v.139(3552), pp. 335–336.

    Article  Google Scholar 

  • TUCKER, M.E. (1982) Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology, v.10(1), pp.7–12.

    Article  Google Scholar 

  • TUCKER, M.E., WRIGHT, V.P. and DICKSON, J.A.D. (2002) Carbonate Sedimentology, Blackwell Science Ltd, 482p.

    Google Scholar 

  • VAN LITH, Y., WARTHMANN, R., VASCONCELOS, C. and MCKENZIE, J.A. (2003) Sulphate–reducing bacteria induce low–temperature Ca-dolomite and high Mg-calcite formation. Geobiology, v.1(1), pp.71–79.

    Article  Google Scholar 

  • VASCONCELOS, C. and MCKENZIE, J.A. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Jour. Sediment. Res., v.67(3), pp.378–390.

    Google Scholar 

  • VASCONCELOS, C., MCKENZIE, J.A., BERNASCONI, S., GRUJIC, D. and TIEN, A.J. (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, v.377, pp.220–222.

    Article  Google Scholar 

  • WACEY, D., WRIGHT, D.T. and BOYCE, A.L. (2007) A stable isotope study of microbial dolomite formation in the Coorong region, south Australia. Chemical Geol., v.244(1-2), pp.155–174.

    Article  Google Scholar 

  • WANG, Y., WANG, Y. and MERINO, E. (1995) Dynamic weathering model: constraints required by coupled dissolution and replacement. Geochim. Cosmochim. Acta, v.59(8), pp.1559–1570.

    Article  Google Scholar 

  • WARREN, J. (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci. Rev., v.52(1-3), pp.1–81.

    Article  Google Scholar 

  • WARTHMANN, R., VAN LITH, Y., VASCONCELOS, C. and MCKENZIE, J.A. (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, v.28(12), pp.1091–1094.

    Article  Google Scholar 

  • WEBER, J.N. (1964) Trace element composition of dolostones and dolomites and its bearing on the dolomite problem. Geochim. Cosmochim. Acta, v.28, pp.1817–1832.

    Article  Google Scholar 

  • WELLS, A. (1962) Primary dolomitization in Persian Gulf. Nature, v.194, pp.274–275

    Article  Google Scholar 

  • WEYL, P.K. (1959) Pressure solution and the force of crystallization—A phenomenological theory. Jour. Geophys. Res., v.64, pp.2001–2025.

    Article  Google Scholar 

  • WHITAKER, F.F. and XIAO, Y. (2010) Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection. AAPG Bull., v.94, pp.889–917.

    Article  Google Scholar 

  • WILSON, E.N., HARDIE, L.A. and PHILLIPS, O.M.. (1990) Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite: The Triassic Latemar buildup, northern Italy. Amer. Jour. Sci., v.290, pp.741–796.

    Article  Google Scholar 

  • WILSON, A.M., SANFORD, W., WHITAKER, F., and SMART, P. (2001) Spatial patterns of diagenesis during geothermal circulation in carbonate platforms. Amer. Jour. Sci., v.301, pp.727–752.

    Article  Google Scholar 

  • WRIGHT, D.T. and WACEY, D. (2004) Sedimentary dolomite -a reality check. In: C. J. R. Braithwaite, G. Rizzi and G. Darke (Eds), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geol. Soc. London Spec. Publi., no.235, pp.65–74.

    Google Scholar 

  • WRIGHT, D.T., WACEY, D. (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, v.52, pp.987–1008.

    Article  Google Scholar 

  • YANAT’EVA, O.K. (1955) Effect of aqueous solutions of gypsum on dolomite in the presence of carbon dioxide. Dokl. Akad. Nauk. SSSR, v.101, pp.911–912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A. Estimation of dolomite formation: Dolomite precipitation and dolomitization. J Geol Soc India 87, 561–572 (2016). https://doi.org/10.1007/s12594-016-0430-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0430-9

Keywords

Navigation