Skip to main content
Log in

Earthquake triggered soft sediment deformational structures (seismites) in the Karewa formations of Kashmir valley–An indicator for palaeo-seismicity

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The intermontane Karewa basin contains a wide variety of seismically induced soft sediment deformation structures, interpreted as seismites and occurs in 1300 m thick succession of upper and lower Karewas. The Karewa Formation of Kashmir valley are glacio- fluvial-lacustrine and aeolian loess of Plio-Pleistocene age. The soft sediment deformational structures occurs in various formations and members of Karewas and vary greatly in terms of morphology and pattern. The Karewa Formations were frequently confronted with recurrent seismic activities during differential upliftment of Pir Panjal and Zanaskar ranges which resulted in various deformation structures during their evolution and development. In the present study, an attempt has been made to relate the palaeo-seismicity events in Karewa formations with the deformed structures of various formations. The origin of these deformational structures have been interpreted and analyzed from the field evidences by applying paleo-seismological approach. During and after the deposition of Karewas different soft sediment deformation structures (seismites) like load cast, convolute lamination, pseudonodules, recumbent folds, sand dykes etc. were formed during liquefaction and triggered by tectonic impulsive events. The deformational structures are evidenced by their unique nature, distribution, association, behaviour and deformation, and can be used as vital indicators for palaeo-seismicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, K.K. and Agrawal, G.K. (2005) A genetic model of Thrust bounded intermontane basin using scaled sandbox analogue models Kashmir basin, Kashmir Himalayas India. Internat. Jour. Earth Sci., v.94, pp.7–52.

    Article  Google Scholar 

  • Allen, J.R.L. and Banks, N.L. (1972) An interpretation and analysis of recumbent-folded deformed cross bedding. Jour. Sediment., v.19, pp.57–283.

    Google Scholar 

  • Allen, J.R.L. (1984) Sedimentary Structures thier Character and Physical Basis. Elsevier, 325p.

    Google Scholar 

  • Allen, J.R.L. (1986) Earthquake magnitude-frequency, epicentral distance and soft sediment deformation in sedimentary basins. Sediment. Geol., v.46, pp.7–75.

    Google Scholar 

  • Ambraseys, N.N. and Jackson, D. (2003) A note on early earthquakes in northern India and southern Tibet. Curr. Sci., v.84(4) pp.571–582.

    Google Scholar 

  • Balazs, T. (2013) Seismically induced soft sediment deformation in the Eocene lacustrine Green river formation (Wyoming, Utah, Colorado, USA). Integration Geo Convention, pp. 1–3.

    Google Scholar 

  • Bhat, D.K. (1975) On Quaternary Geology of Kashmir Valley with special reference to Stratigraphy and Sedimentation. Geol. Surv. India Misc. Publ., v.24, pp.88–204.

    Google Scholar 

  • Bhatt, D.K. (1979) Lithostratigraphic subdivision of the Hirpur formation Lower Karewa a critical review and modification. Himalayan Geol., v.9, pp.283–291.

    Google Scholar 

  • Bhat, D.K. (1982) A review of stratigraphy of Karewa group (Pliocene/Quaternary) Kashmir. Man and Environment, v.6, pp.6–55.

    Google Scholar 

  • Bhat, M.I. (1982) Thermal and Tectonic evolution of Kashmir basin vis-à-vis Petroleum prospects. Tectonophysics, v.8, pp.17–132.

    Google Scholar 

  • Bhattacharya, H.N. and Bandopadhyay, S. 1998 Seismites in a Proterozoic tidal succession, Singhbum, Bihar, India. Sediment. Geol., v.119, pp.39–252.

    Article  Google Scholar 

  • Brodzikowski, K. and Van Loon, A.J. (1987) A systematic classification of glacial and peiglacial environments, facies and deposits. Earth Sci. Rev., v.24, pp.97–381.

    Article  Google Scholar 

  • Burbank, D.W. (1983) The chronology of Intermontane Basin development in the North-Western Himalayas and the evolution of North-West syntaxes. Earth Planet. Sci. Lett., v.64, pp.7–9.

    Article  Google Scholar 

  • Burbank, D.W. and Johnson, G.D. (1983) The late Cenozoic chronologic and stratigraphic development of the Kashmir Intermontane Basin Northwestern Himalaya. Paleogeo. Palaeoclimat. Palaeoecol., v.43, pp.205–235.

    Article  Google Scholar 

  • Burbank, D.W. Robert, G.H. and Reynolds A (1984) Sequential Late Cenozoic Structural Disruption of the North Himalaya Foredeep. Nature, v.311, pp.15–118.

    Article  Google Scholar 

  • Burbank, D.W. and Anderson, R.S. (2001) Tectonic Geomorphology. Blackwell Publishing, pp.105.

    Google Scholar 

  • Bowman, D.H. and Bruin S (2001) Load Caste Structures Seismites in the Dead Sea Area Israel Chronological Bench marking with C14 dating. Archeo. Envi. Radiocarbon, v.43, pp.383–1390.

    Google Scholar 

  • Chakrabarti, A. (1977) Upward Flow and Convolute Lamination. Senckenbergian Maritima, v.9, pp.85–305.

    Google Scholar 

  • Davies, N.S. Turner, P. and Sansom, I.J. (2004) Soft-sediment deformation structures in the Late Silurian Stubdal Formation the result of seismic triggering. Norway Jour. Geol., v.85, pp.33–243.

    Google Scholar 

  • Elliot, R.E. (1965) A classification of subaqueous sedimentary structures based on rheological and kinematical parameters. Sedimentology, v.5, pp.93–209.

    Google Scholar 

  • Fuller, M.L. (1912) The new Madrid earthquake. US Geol Sur Bull 494: pp. 119.

    Google Scholar 

  • Gansser, A. (1964) A Geology of Himalayas. Inter Scie Publ John Wiley London.

    Google Scholar 

  • Ghosh, S.K. and Mukhopadhyay, A. (1986) Soft sediment recumbent folding in slump-generated bed in Jharia Bain, eastern India. Jour. Geol. Soc. India, v.27, pp.94–201.

    Google Scholar 

  • Jayangondaperumal, R., Thakur, V.C. and Suresh, N. (2008) Liquefaction features of the 2005 Muzzafarabad-Kashmir earthquake and evidences of paleoearthquakes near Jammu, Kashmir Himalayas. Curr. Sci., v.95(8), pp.1–5.

    Google Scholar 

  • Jayangondaperumal, R. and Thakur, V.C. (2008) Co-seismic secondry surface fractures on Southeastward extension of the rupture zone of the 2005 Kashmir earthquake. Tectonophysics, v.446, pp.1–76.

    Article  Google Scholar 

  • Kotla, B.S. (1985) Vertebrate fossils and Paleoenvironment of the Karewa Intermontane basin. Curr. Sci., v.54, pp.275–1277.

    Google Scholar 

  • Leeder, M. (1987) Sediment deformation structures and the palaeotectonic analysis of sedimentary basins with a case-study from the Carboniferous of Northern England. In: M.E. Jones and R.M.F. Preston (Eds.), Deformation of sediments and Sedimentary Rocks. Geol. Soc. Spec. Publ. v.29, pp.137–146.

    Article  Google Scholar 

  • Li, S., Du Y., Zhang, Z. and Wu, J. (2008) Earth quake related soft-sediment deformation structures in the Palaeogene on the continental shelf of the East China sea. Front. Earth Sci. China, v.2(2), pp.77–186.

    Google Scholar 

  • Long, D.G.F. (2004) The Tectonostratigraphic Evolution of the Huronian Basement and subsequent basin fill. Jour. Precambrian Res., v.129, pp.03–223.

    Google Scholar 

  • Lydekker, R. (1883) The geology of Kashmir and Chamba territories and the British district of Kangan. Geol. Surv. India Mem., v.22, pp.1–344.

    Google Scholar 

  • Lowe, D.R. (1975) Water escape structures in coarse-grained sediments. Sediment., v.22, pp.57–204.

    Article  Google Scholar 

  • Lowe, D.R. (1976) subaqueous liquefied and fluidized sediment flows and their deposits. Sediment., v.23, pp.85–308.

    Article  Google Scholar 

  • Maltman, (1984) On the term soft sediment deformation. Jour. Struct. Geol., v.6, pp.89–592.

    Article  Google Scholar 

  • Mazumder, R., Van Loon, et al., (2006) Soft-sediment deformation structures in the Earth’s oldest seismites. Sediment. Geol., v.186, pp.9–26.

    Article  Google Scholar 

  • McCalpin, J.P. (2009) Paleoseismology. Internat. Geol. Phys. Ser., v.5, pp.539.

    Google Scholar 

  • Moretti, M., Alfaro, P., Caselles, O. and Canas, J.A. 1999 Modelling seismites with digital shaking table. Tectonophysics, v.304, pp.69–383.

    Article  Google Scholar 

  • Moretti, M. and Sabato, L. (2007) Recognition of trigger mechanisms for soft-sediment deformation in thePleistocene lacustrine deposits of the Sant Arcangelo Basin Southern Italy Seismic shock vs. overloading. Jour. Sedimen. Geol., v.196, pp. 31–45.

    Article  Google Scholar 

  • Mugnier, J.L., Gajurel, A., Huyghe, P., Jayangondaperumal, R., Jouanne, F. and Upreti, B. (2013) Structural interpretation of great earthquakes of the last millennium in central Himalaya. Earth Sci. Rev., v.127, pp.0–47.

    Article  Google Scholar 

  • Obermeier, S.F. (1996) Use of liquefaction-induced features for palaeo-seismic analysis. An overview of how seismic liquefaction features can be distinguished from other features and how this regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Jour. Engg. Geol., v.44, pp.1–76.

    Google Scholar 

  • Owen, G. (1995) Soft-Sediment Deformation in the upper Proterozoic Torridonian Sandstones Applecross Formation at Torridon Northwest Scotland. Jour. Sedimen. Res., v.65, pp.95–504.

    Google Scholar 

  • Reineck, H.E. and Singh, I.B. (1980) Depositional sedimentary environments. Springer-Verlag, Berlin-Heideberg-New York, 439p.

    Book  Google Scholar 

  • Robinson, P.L. (1970) The India Gondwana formations-a review. In: Proc. First Internat. Symp. Gondwana stratigraphy, IUGS, Buenos Aires, South America, pp.201–268.

    Google Scholar 

  • Rodriguez-Pascua, M.A., Calvo, J.P. et al. (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone SE Spain and their potential use as indicators of earthquake magnitudes during the Late Miocene. Jour. Sedimen. Geol., v.135, pp.17–135.

    Google Scholar 

  • Seed, H.B. and Idriss, I.M. (1982) A simplified procedure for evaluating soil liquefaction potential. Jour. Soil Mech. Found. Engg. Div., v.97, pp.249–1274.

    Google Scholar 

  • Shiki, T. (1996) Reading the trigger records of sedimentary events a problem for future studies. Jour. Sedimen. Geol., v.104, pp.49–255.

    Google Scholar 

  • Sims, J.D. (1973) Earthquake induced structures in sediments of Van Norman Lake Fernando California. Science, v.182, pp.61–163.

    Article  Google Scholar 

  • Sims, J.D. (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, v.29, pp.41–152.

    Article  Google Scholar 

  • Singh, I.B. (1982) Sedimentation Pattern in the Karewa Basin Kashmir Valley India, and its geological significance. Jour. Pal. Soc. India, v.27, pp.1–110.

    Google Scholar 

  • Seilacher, A. (1969) Fault graded beds interpreted as seismites. Jour. Sediment., v.13, pp.55–159.

    Google Scholar 

  • Seilacher, A. (1984) Sedimentary structures tentatively attributed to seismic events. Jour. Marine Geol., v.55, pp.112.

    Google Scholar 

  • Sukhija, B.S., Rao, M.N., Reddy, D.V., Nagabhushanam, P., Hussain, S., Chadha, R.K. and Gupta, H.K. (1999) Timing and return period of major palaeoseismic events in the Shillong Platue, India. Tectonophysics, v.308, pp.3–65.

    Article  Google Scholar 

  • Thakur, V.C., Jayangondaperumal, R. and Malik, M.A. (2010) Redefining Medlicott-Wadia's main boundry thrust in Northwest Himalaya. Tectonophysics, v.489, pp.9–42.

    Article  Google Scholar 

  • Tuttle, M. and Seeber, L. (1991) Historic and Prehistoric Earthquakes induced Liquefaction in Newbury Massachusetts. Geology, v.19, pp.94–597.

    Article  Google Scholar 

  • Wadia, D.N. 1931 The syntaxis of the northwest Himalaya its rocks tectonics and orogeny. Rec. Geol. Surv. India, v.65, pp.89–220.

    Google Scholar 

  • Wadia, D.N. (1934) The Cambrian–Trias sequences of northwest Kashmir (parts of the Muzzafarabad and Baramulla District). Rec. Geol. Surv. India, v.68, pp.21–146.

    Google Scholar 

  • Wadia, D.N. (1963) Geology of Himalayan Mountains their age origin and sub crustal relations. F.R.S. F.N.I, New Delhi, v.29, pp.78–387.

    Google Scholar 

  • Valdiya, K.S. (1991) Quaternary Tectonic History of Northwest Himalaya. Curr. Sci., v.61, pp.64–668.

    Google Scholar 

  • Van Loon, A.J. (1992) The recognition of soft sediment deformations as early–diagenetic features -a literature review. Dev. In: Sediment., Elsevier, v.47, pp.35–189.

    Google Scholar 

  • Van Loon, A.J. (2009) Soft sediment deformation structures in Siliclastic Sediments; an overview. Geologos. v.15(1), pp.3–55.

    Google Scholar 

  • Vanneste, K., Maghraoui, M. and Camelbeeck, T. (1999) Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophys., v.309, pp.57–7.

    Article  Google Scholar 

  • Youd, T.L. 1973 Liquefaction, flow and associated ground failure. US Geo Surv Circ v. 688: pp. 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulam Rasool Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, G.R., Bali, B.S., Balaji, S. et al. Earthquake triggered soft sediment deformational structures (seismites) in the Karewa formations of Kashmir valley–An indicator for palaeo-seismicity. J Geol Soc India 87, 439–452 (2016). https://doi.org/10.1007/s12594-016-0412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0412-y

Keywords

Navigation