Skip to main content
Log in

Optimizing Control for a Piezo-Viscoelastic Contact Challenge Involving Normal Compliance and Coulomb’s Friction

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The objective of this paper is to investigate an optimal control problem related to a frictional contact problem involving a piezo-viscoelastic body and an electrically conductive foundation. The contact procedure is characterized by a compliance normal condition combined with a version of Coulomb’s friction law. A variational formulation of the model is developed, resulting in a coupled system for the displacement files and electric potentials. We establish the existence and uniqueness results for a weak solution under the assumption of a smallness condition. Finally, we establish the existence of optimal solutions for two classes of optimal control problems and inverse problems which are described by the piezo-viscoelastic contact problem under consideration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Awbi, B., El Essoufi, H., Sofonea, M.: A viscoelastic contact problem with normal damped response and friction. Annales Polonici Mathematici LXXV 75(3), 233–246 (2000)

    Article  MathSciNet  Google Scholar 

  2. Campo, M., Fernández, J.R., Viano, J.M.: Numerical analysis and simulations of a quasistatic frictional contact problem with damage in viscoelasticity. J. Comput. Appl. Math. 192(1), 30–39 (2006)

    Article  MathSciNet  Google Scholar 

  3. Shillor, M., Sofnea, M., Telega, J.J.: Quasistatic viscoelastic contact with friction and wear diffusion. Q. Appl. Math. 62(2), 379–399 (2004)

    Article  MathSciNet  Google Scholar 

  4. Lerguet, Z., Shillor, M., Sofonea, M.: A frictional contact problem for an electro-viscoelastic body. Electron. J. Differ. Equ. (EJDE) 2007, Paper No. 170 (2007)

    MathSciNet  Google Scholar 

  5. Wang, D., de Boer, G., Neville, A., Ghanbarzadeh, A.: A review on modelling of viscoelastic contact problems. Lubricants 10(12), 358 (2022)

    Article  Google Scholar 

  6. Carbone, G., Mandriota, C., Menga, N.: Theory of viscoelastic adhesion and friction. Extrem. Mech. Lett. 56, 101877 (2022)

    Article  Google Scholar 

  7. Mandriota, C., Menga, N., Carbone, G.: Adhesive contact mechanics of viscoelastic materials. arXiv preprint arXiv:2303.05319 (2023)

  8. Boulaouad, A., Ourahmoun, A., Serrar, T.: Analysis of a frictionless electro viscoelastic contact problem with Signorini conditions. Eng. Technol. Appl. Sci. Res. 12(5), 9224–9228 (2022)

    Article  Google Scholar 

  9. Giorgi, C., Morro, A.: Modelling of electro-viscoelastic materials through rate equations. Materials 16(10), 3661 (2023)

    Article  Google Scholar 

  10. Douib, B., Ammar, T.H., Ahmed, A.A.: Analysis of a dynamic contact problem for electro-viscoelastic materials with Tresca’s friction. TWMS J. Appl. Eng. Math. 12(4), 1490–1505 (2022)

    Google Scholar 

  11. Benaissa, H., Benkhira, E.H., Fakhar, R., Hachlaf, A.: On the Signorini’s contact problem with non-local Coulomb’s friction in thermo-piezoelectricity. Acta Appl. Math. 169(1), 33–58 (2020)

    Article  MathSciNet  Google Scholar 

  12. Benaissa, H., Benkhira, E.H., Fakhar, R., Hachlaf, A.: Quasistatic frictional thermo-piezoelectric contact problem. Math. Methods Appl. Sci. 42(4), 1292–1311 (2019)

    Article  MathSciNet  Google Scholar 

  13. Baiz, O., Benaissa, H., Moutawakil, D., Fakhar, R.: Variational and numerical analysis of a quasistatic thermo-electro-visco-elastic frictional contact problem. ZAMM J. Appl. Math. Mech. (2019). https://doi.org/10.1002/zamm.201800138

    Article  Google Scholar 

  14. Ciarlet, P.G., Miara, B., Thomas, J.-M.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    Google Scholar 

  16. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  Google Scholar 

  17. Capatina, A.: Variational Inequalities Frictional Contact Problems. Advances in Mechanics and Mathematics, vol. 31. Springer, New York (2014)

    Book  Google Scholar 

  18. Matei, A., Micu, S.: Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. Theory Methods Appl. 74(5), 1641–1652 (2011)

    Article  MathSciNet  Google Scholar 

  19. Touzaline, A.: Optimal control of a frictional contact problem. Acta Math. Appl. Sin. Engl. Ser. 31(4), 991–1000 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sofonea, M.: Optimal control of a class of variational–hemivariational inequalities in reflexive Banach spaces. Appl. Math. Optim. 79, 621–646 (2019)

    Article  MathSciNet  Google Scholar 

  21. Couderc, M., Sofonea, M.: An elastic frictional contact problem with unilateral constraint. Mediterranean J. Math. 15(195), 1–18 (2018)

    MathSciNet  Google Scholar 

  22. Sofonea, M., Xiao, Y.B., Couderc, M.: Optimization problems for a viscoelastic frictional contact problem with unilateral constraints. Nonlinear Anal. Real World Appl. 50, 86–103 (2019)

    Article  MathSciNet  Google Scholar 

  23. Friedman, A.: Optimal control for variational inequalities. SIAM J. Control Optim. 24(3), 439–451 (1986)

    Article  MathSciNet  Google Scholar 

  24. Bonnans, F., Casas, E.: An extension of Pontryagin’s principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33(1), 274–298 (1995)

    Article  MathSciNet  Google Scholar 

  25. Khan, A.A., Sama, M.: Optimal control of multivalued quasi variational inequalities. Nonlinear Anal. Theory Methods Appl. 75(3), 1419–1428 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zeng, S., Migórski, S., Khan, A.A.: Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control Optim. 59(2), 1246–1274 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zeng, S., Migórski, S., Liu, Z., Well-posedness, Z.: optimal control, and sensitivity analysis for a class of differential variational–hemivariational inequalities. SIAM J. Optim. 31(4), 2829–2862 (2021)

    Article  MathSciNet  Google Scholar 

  28. Peng, Z.J., Kunisch, K.: Optimal control of elliptic variational–hemivariational inequalities. J. Optim. Theory Appl. 178, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  29. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Google Scholar 

  30. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  31. Sofonea, M., Kazmi, K., Barboteu, M., Han, W.: Analysis and numerical solution of a piezoelectric frictional contact problem. Appl Math Model 36, 4483–4501 (2012)

    Article  MathSciNet  Google Scholar 

  32. Sofonea, M., Chau, O., Han, W.: Analysis and approximation of a viscoelastic contact problem with slip dependent friction. Dyn. Contin. Discret. Impul. Syst. Ser. B 8(2), 153–174 (2001)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Bouallala.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouallala, M. Optimizing Control for a Piezo-Viscoelastic Contact Challenge Involving Normal Compliance and Coulomb’s Friction. Differ Equ Dyn Syst (2024). https://doi.org/10.1007/s12591-024-00694-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-024-00694-x

Keywords

Mathematics Subject Classification

Navigation