Skip to main content
Log in

Impact of Volatile Mediated Indirect Defense Response of Plant and Herbivore Refuge in Tritrophic Cascade

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Plants emit volatile secondary metabolites in response to the attacks from herbivorous insects and send signals to carnivorous enemies as reinforcement against the herbivores. Presence of higher carnivores, attracted by the released volatile blends, increases predation pressure on the herbivores. To reduce predation pressure, the herbivore adopts a refuge mechanism. Two natural phenomena are combined by proposing a volatile mediated model-based tritrophic system among the plants, herbivorous insects, and the natural carnivorous enemy, emphasizing the role of plant volatiles and herbivore refuge. In particular, we have highlighted the role of volatile mediated plant’s indirect defense mechanism on its fitness improvement under different ecological consequences, for example, considering different functional responses for herbivores (Holling type II) and carnivorous enemies (Holling type III) associating hiding behavior of herbivores (herbivore refuge) in a tritrophic interaction model. Numerical simulations and analytical treatments are conducted to validate our proposed hypothesis on the tritrophic interaction. Using Isocline method, we show the existence of the interior equilibriums. We illustrate sensitivity analysis of system parameters through Global Sensitivity Analysis using Latin Hypercube Sampling and Partial Ranked Correlation Coefficient. The high-dimensional Bendixson criterion is applied to show global stability of positive equilibrium. We observed two types of alternative states, transcritical bifurcation of limit cycle, and saddle-node bifurcation. High emission of volatiles promotes more stabilized dynamical behaviors, when all three species coexist, thus sustaining the ecological balance in the tritrophic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., Weis, A.E.: Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11(1), 41–65 (1980)

    Article  Google Scholar 

  2. Pichersky, E., Dudareva, N.: Biology of Plant Volatiles. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  3. Li, T., Holst, T., Michelsen, A., Rinnan, R.: Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. Nat. Plants 5(6), 568–574 (2019)

    Article  Google Scholar 

  4. Heil, M.: Indirect defence via tritrophic interactions. New Phytol. 178(1), 41–61 (2008)

    Article  Google Scholar 

  5. Dicke, M.: Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. J. Plant Physiol. 143(4–5), 465–472 (1994)

    Article  Google Scholar 

  6. Dudareva, N., Negre, F., Nagegowda, D.A., Orlova, I.: Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25(5), 417–440 (2006)

    Article  Google Scholar 

  7. Kigathi, R.N., Weisser, W.W., Reichelt, M., Gershenzon, J., Unsicker, S.B.: Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol. 19(1), 58 (2019)

    Article  Google Scholar 

  8. Pan, Y., Wang, Z., Zhao, S.-W., Wang, X., Li, Y.-S., Liu, J.-N., Wang, S., Xi, J.-H.: The herbivore-induced plant volatile tetradecane enhances plant resistance to Holotrichia parallela larvae in maize roots. Pest Manag. Sci. 78(2), 550–560 (2022)

    Article  Google Scholar 

  9. Zhou, S., Jander, G.: Molecular ecology of plant volatiles in interactions with insect herbivores. J. Exp. Bot. 73(2), 449–462 (2022)

    Article  Google Scholar 

  10. Karalija, E., Šamec, D., Dahija, S., Ibragić, S.: Plants strike back: plant volatiles and their role in indirect defence against aphids. Physiol. Plant. 175(1):e13850 (2023)

    Google Scholar 

  11. Schowalter, T.D.: Insect Ecology: An Ecosystem Approach. Academic Press, Cambridge (2022)

    Google Scholar 

  12. Gullan, P.J., Cranston, P.S.: The Insects: An Outline of Entomology. Wiley, Hoboken (2014)

    Google Scholar 

  13. Schmidt, J.O.: Defensive Behavior. Elsevier, Amsterdam (2009)

    Book  Google Scholar 

  14. Das, A., Roy, S.K.: Dynamics of stage-structured prey–predator model with prey refuge and harvesting. Int. J. Model. Simul. 42(6), 966–984 (2022)

    Article  Google Scholar 

  15. Molla, H., Sarwardi, S., Haque, M.: Dynamics of adding variable prey refuge and an Allee effect to a predator–prey model. Alex. Eng. J. 61(6), 4175–4188 (2022)

    Article  Google Scholar 

  16. McNair, J.N.: The effects of refuges on predator–prey interactions: a reconsideration. Theor. Popul. Biol. 29(1), 38–63 (1986)

    Article  MathSciNet  Google Scholar 

  17. Ruxton, G.: Short term refuge use and stability of predator–prey models. Theor. Popul. Biol. 47(1), 1–17 (1995)

    Article  Google Scholar 

  18. Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    Article  Google Scholar 

  19. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator–prey model with Holling type ii functional response incorporating a constant prey refuge. Nonlinear Anal.: Real World Appl. 11(1), 246–252 (2010)

    Article  MathSciNet  Google Scholar 

  20. Kar, T.K.: Stability analysis of a prey–predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10(6), 681–691 (2005)

    Article  MathSciNet  Google Scholar 

  21. Sih, A.: Prey refuges and predator–prey stability. Theor. Popul. Biol. 31(1), 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  22. González-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(1–2), 135–146 (2003)

    Article  Google Scholar 

  23. Hassell, M.P.: The Dynamics of Arthopod Predator–Prey Systems. (MPB-13), vol. 13. Princeton University Press, Princeton (2020)

    Book  Google Scholar 

  24. Holt, R.D., Hassell, M.P.: Environmental heterogeneity and the stability of host–parasitoid interactions. J. Anim. Ecol. 89–100 (1993)

  25. Chattopadhayay, J., Sarkar, R., Fritzsche-Hoballah, M.E., Turlings, T.C., Bersier, L.-F.: Parasitoids may determine plant fitness—a mathematical model based on experimental data. J. Theor. Biol. 212(3), 295–302 (2001)

    Article  Google Scholar 

  26. Dicke, M., van Loon, J.J.: Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia experimentalis et applicata 97(3), 237–249 (2000)

    Article  Google Scholar 

  27. Liu, Y., Zeng, R., Liu, D., Luo, S., Wu, H., An, M.: Modelling dynamics of plant defence volatiles using the An–Liu–Johnson–Lovett model. Allelopath. J. 18(2), 215 (2006)

    Google Scholar 

  28. Liu, Y.H., Li Liu, D., An, M., Fu, Y.L., Zeng, R.S., Luo, S.M., Wu, H., Pratley, J.: Modelling tritrophic interactions mediated by induced defence volatiles. Ecol. Model. 220(23), 3241–3247 (2009)

    Article  Google Scholar 

  29. Fergola, P., Wang, W.: On the influences of defensive volatiles of plants in tritrophic interactions. J. Biol. Syst. 19(02), 345–363 (2011)

    Article  MathSciNet  Google Scholar 

  30. Mondal, R., Kesh, D., Mukherjee, D.: Influence of induced plant volatile and refuge in tritrophic model. Energy Ecol. Environ. 3(3), 171–184 (2018)

    Article  Google Scholar 

  31. Mondal, R., Kesh, D., Mukherjee, D.: Influence of competition in modelling dynamics of plant defense with induced volatile. Model. Earth Syst. Environ. 4(3), 1197–1211 (2018)

    Article  Google Scholar 

  32. Mondal, R., Kesh, D., Mukherjee, D.: Role of induced volatile emission modelling tritrophic interaction. Differ. Equ. Dyn. Syst. (2019). https://doi.org/10.1007/s12591-019-00458-y

    Article  Google Scholar 

  33. Mondal, R., Saha, S., Kesh, D., Mukherjee, D.: Basin transition and alternative states: role of multi-species herbivores-induced volatile in plant–insect interactions. Bull. Math. Biol. 83(10), 100 (2021)

    Article  MathSciNet  Google Scholar 

  34. Kalinkat, G., Rall, B.C., Uiterwaal, S.F., Uszko, W.: Empirical evidence of type iii functional responses and why it remains rare. Front. Ecol. Evol. 11, 1033818 (2023)

    Article  Google Scholar 

  35. Erbach, A., Lutscher, F., Seo, G.: Bistability and limit cycles in generalist predator–prey dynamics. Ecol. Complex. 14, 48–55 (2013)

    Article  Google Scholar 

  36. Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev./Revue Internationale de Statistique 229–243 (1994)

  37. Huang, Y., Chen, F., Zhong, L.: Stability analysis of a prey–predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182(1), 672–683 (2006)

    MathSciNet  Google Scholar 

  38. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1. Can. Entomol. 91(5), 293–320 (1959)

    Article  Google Scholar 

  39. Holling, C.S.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 98(S48), 5–86 (1966)

    Article  Google Scholar 

  40. Hassell, M., Lawton, J., Beddington, J.: Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 249–262 (1977)

  41. Akre, B.G., Johnson, D.M.: Switching and sigmoid functional response curves by damselfly naiads with alternative prey available. J. Anim. Ecol. 703–720 (1979)

  42. Colton, T.F.: Extending functional response models to include a second prey type: an experimental test. Ecology 68(4), 900–912 (1987)

    Article  Google Scholar 

  43. Sarnelle, O., Wilson, A.E.: Type III functional response in daphnia. Ecology 89(6), 1723–1732 (2008)

    Article  Google Scholar 

  44. Kreuzinger-Janik, B., Brüchner-Hüttemann, H., Traunspurger, W.: Effect of prey size and structural complexity on the functional response in a nematode-nematode system. Sci. Rep. 9(1), 5696 (2019)

    Article  Google Scholar 

  45. Kondoh, M.: Foraging adaptation and the relationship between food-web complexity and stability. Science 299(5611), 1388–1391 (2003)

    Article  Google Scholar 

  46. Heckmann, L., Drossel, B., Brose, U., Guill, C.: Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecol. Lett. 15(3), 243–250 (2012)

    Article  Google Scholar 

  47. Murdoch, W.W., Avery, S., Smyth, M.E.: Switching in predatory fish. Ecology 56(5), 1094–1105 (1975)

    Article  Google Scholar 

  48. Hammill, E., Petchey, O.L., Anholt, B.R.: Predator functional response changed by induced defenses in prey. Am. Nat. 176(6), 723–731 (2010)

    Article  Google Scholar 

  49. Zhang, P.J., Wei, J.N., Zhao, C., Zhang, Y.-F., Li, C.Y., Liu, S.S., Dicke, M., Yu, X.P., Turlings, T.C.: Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc. Natl. Acad. Sci. USA 116(15), 7387–7396 (2019)

    Article  Google Scholar 

  50. Sunaryo, M.S.W., Salleh, Z., Mamat, M.: Mathematical model of three species food chain with Holling type-III functional response. Int. J. Pure Appl. Math. 89(5), 647–657 (2013)

    Google Scholar 

  51. Birkhoff, G., Rota, G.: Ordinary Differential Equations. Ginn and Co, Boston (1982)

    Google Scholar 

  52. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer, Berlin (2013)

    Google Scholar 

  53. González-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(1–2), 135–146 (2003)

    Article  Google Scholar 

  54. McNair, J.N.: The effects of refuges on predator–prey interactions: a reconsideration. Theor. Popul. Biol. 29(1), 38–63 (1986)

    Article  MathSciNet  Google Scholar 

  55. Freedman, H., Waltman, P.: Persistence in models of three interacting predator–prey populations. Math. Biosci. 68(2), 213–231 (1984)

    Article  MathSciNet  Google Scholar 

  56. Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    Article  MathSciNet  Google Scholar 

  57. Sun, C., Loreau, M.: Dynamics of a three-species food chain model with adaptive traits. Chaos Solitons Fractals 41(5), 2812–2819 (2009)

    Article  MathSciNet  Google Scholar 

  58. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)

    Article  Google Scholar 

  59. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, vol. 14. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  60. De Boer, J.G., Hordijk, C.A., Posthumus, M.A., Dicke, M.: Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J. Chem. Ecol. 34(3), 281 (2008)

    Article  Google Scholar 

  61. Jun-Ping, C., Hong-De, Z.: The qualitative analysis of two species predator–prey model with Holling’s type III functional response. Appl. Math. Mech. 7(1), 77–86 (1986)

    Article  MathSciNet  Google Scholar 

  62. Mukherjee, D.: Dynamics of defensive volatile of plant modeling tritrophic interactions. Int. J. Nonlinear Sci. 25(2), 76–86 (2018)

    MathSciNet  Google Scholar 

  63. Sarwardi, S., Hossain, S., Al Basir, F., Ray, S.: Mathematical analysis of an ecological system using a non-monotonic functional response: effects of gestation delay and predator harvesting. Int. J. Dyn. Control 11(2), 605–618 (2023)

    Article  MathSciNet  Google Scholar 

  64. Bairagi, N., Jana, D.: On the stability and Hopf bifurcation of a delay-induced predator–prey system with habitat complexity. Appl. Math. Model. 35(7), 3255–3267 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and the editor for their insightful comments in improving the manuscript. This research of Ritwika Mondal was supported by DST/INSPIRE Fellowship/ 2015/ IF 150747. SS is supported by NPDF, SERB-DST, India, Award ID: PDF/2021/000585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritwika Mondal.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest or any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Kesh, D., Mukherjee, D. et al. Impact of Volatile Mediated Indirect Defense Response of Plant and Herbivore Refuge in Tritrophic Cascade. Differ Equ Dyn Syst (2024). https://doi.org/10.1007/s12591-024-00682-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-024-00682-1

Keywords

Navigation