Skip to main content

Advertisement

Log in

Effect of Delayed Immune Response on the Dynamics of HIV Infection Under Multidrug Treatment

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This study considers a mathematical model that describes the interaction between HIV, CD4+ T-cells and immune response of the body. The immune response activates with a time delay. A combined antiretroviral drug therapy is applied to control the progression of HIV to AIDS. Conditions are obtained for the existence and stability of uninfected and infected steady states. The delay in immune response contributes to alter the stability of steady states. More precisely, this time delay may not affect the local asymptotical stability of uninfected steady state, but can destabilize the infected steady state, which further leads to Hopf bifurcations. A critical delay has been identified to classify the significance of immune system of the body in changing the HIV infection dynamics. The direction of Hopf bifurcation and the stability of bifurcating periodic solutions are obtained using the center manifold theory. Numerical simulations are computed and exhibited to illustrate the effects of delayed immune response on the growth or decay of infection in the presence of combined drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Culshaw, R.V., Ruan, S., Raymond, J.S.: Optimal HIV treatment by maximising immune response. J. Math. Biol. 48, 545–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nowak, M.A., May, R.M.: Virus Dynamics. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  4. Wodarz, D., Nowak, M.A.: Specific therapy regimes could lead to a long-term immunological control of HIV. Proc. Natl. Acad. Sci. 96, 14464–14469 (1999)

    Article  Google Scholar 

  5. Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin. Dyn. Syst. Ser. B 12, 511–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie, Q., Huang, D., Zhang, S., Cao, J.: Analysis of a viral infection model with delayed immune response. Appl. Math. Model. 34, 2388–2395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhu, H., Luo, Y., Chen, M.: Stability and hopf bifurcation of a HIV infection model with CTL-response delay. Comput. Math. Appl. 62, 3091–3102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Song, X., Wang, S., Zhou, X.: Stability and hopf bifurcation for a viral infection model with delayed nonlytic immune response. J. Appl. Math. Comput. 33, 251–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Perelson, A.S., Kirschner, D.E., De Boer, R.: Dynamics of HIV Infection of CD4+ T-cells. Math. Biosci. 114, 81–125 (1993)

    Article  MATH  Google Scholar 

  10. Perelson, A.S.: Modelling the interaction of the immune system with HIV. In: Castillo-Chavez, C. (ed.) Mathematical and Statistical Approaches to AIDS Epidemiology, p. 350. Springer, Berlin (1989)

    Chapter  Google Scholar 

  11. Perelson, A.S., Nelson, P.W.: Mathematical Analysis of HIV-1 Dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Leenheer, P., Smith, H.L.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63, 1313–1327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, L., Li, M.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T-cells. Math. Biosci. 200, 44–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wodarz, D., Hamer, D.H.: Infection dynamic in HIV-specific CD4+ T-cells. Math. Biosci. 209, 14–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  16. Mittler, J., Sulzer, B., Neumann, A., Perelson, A.S.: Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163 (1998)

    Article  MATH  Google Scholar 

  17. Callaway, D., Perelson, A.S.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64 (2002)

    Article  MATH  Google Scholar 

  18. Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 6971–6976 (1997)

    Article  Google Scholar 

  20. Dixit, N.M., Perelson, A.S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203–217 (1997)

    Article  Google Scholar 

  22. Nelson, P., Mittler, J., Perelson, A.S.: Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters. J. Acquir. Immune. Defic. Syndr. 26, 405–412 (2001)

    Article  Google Scholar 

  23. Kirschner, D.E., Webb, G.F.: A mathematical model of combined drug therapy of HIV infection. J. Theor. Med. 1, 25–34 (1997)

    Article  MATH  Google Scholar 

  24. Rong, L., Feng, Z., Perelson, A.S.: Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J. Appl. Math. 67, 731–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mellors, J.W., Rinaldo, C.R., Gupta, P., White, R.M., Todd, J.A., Kingsley, L.A.: Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170 (1996)

    Article  Google Scholar 

  26. Li, M.Y., Shu, H.Y.: Global dynamics of a mathematical model for HTLV-1 infection of CD4+ T cells with delayed CTL response. Nonlinear Anal. Real World Appl. 13, 1080–1092 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparision with patient data. Math. Biosci. 235, 98–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Srivastava, P.K., Banerjee, M., Chandra, P.: A primary infection model for HIV and immune response with two discrete time delays. Differ. Equ. Dyn. Syst. 18, 385–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kamboj, D., Sharma, M.D.: Effects of combined drug therapy on HIV-1 infection dynamics. Int. J. Biomath. 09, 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Zhou, Y., Wu, J., Heffernan, J.: Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math. Biosci. 219, 104–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, L., Ellermeyer, S.: HIV infection and CD4+ T-cell dynamics. Discrete Contin. Dyn. Syst. B6, 1417–1430 (2006)

    MATH  Google Scholar 

  32. Hale, J.: Theory of Functional Differential Equations, 2nd edn. Springer, New York (1977)

    Book  MATH  Google Scholar 

  33. Yang, X., Chen, L., Chen, J.: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput. Math. Appl. 32, 109–116 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Freedman, H.I., Sree Hari Rao, V.: The trade off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45, 991–1004 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hassard, B.D., Kazrinoff, N.D., Wan, W.H.: Theory and Application of Hopf Bifurcation, London Math Society Lect. Note Series, vol. 41. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  36. Srivastava, P.K., Chandra, P.: Hopf bifurcation and periodic solutions in model for the dynamics of HIV and immune response. Differ. Equ. Dyn. Syst. 16, 77–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepmala Kamboj.

Appendix A

Appendix A

Define a space of continuous real valued functions as \(C=C([-1,0],R^5)\). Let \(u_{1}(t)=T(t)-\overline{T}(t),\) \(u_{2}(t)=T_{1}(t)-\overline{T_{1}}(t)\), \(u_{3}(t)=T_{2}(t)-\overline{T_{2}}(t)\), \(u_{4}(t)=V(t)-\overline{V}(t)\) and \(u_{5}(t)=E(t)-\overline{E}(t)\). Define \(x_{i}(t)=u_{i}(\tau t)\) for \(i=1,2,3,4,5\), with \(\tau =\tau _{j}+\nu ,\) \(\nu \in R\), so that \(\nu =0\) is Hopf bifurcation value for the system. Then, the delay system (2.5)–(2.9) transforms to the functional differential equation in C as follows:

$$\begin{aligned} \frac{dx}{dt}=L_\nu x_{t}+f(\nu , x_{t}), \end{aligned}$$
(7.1)

where \(x(t)=(x_{1}(t),x_{2}(t), x_{3}(t), x_{4}(t), x_{5}(t))^{T}\in R^{5}\), \(x_{t}(\theta )=x(t+\theta ),\) \(\theta \in [-1,0]\). \(L_{\nu }:C\rightarrow R^{5}\) and \(f:C \times R \rightarrow R^{5}\) are given by

$$\begin{aligned} L_{\nu }\varphi =(\tau _{j}+\nu )[J_{1}\varphi (0)+J_{2}\varphi (-1)];~~\varphi =(\varphi _{1},\varphi _{2},\varphi _{3},\varphi _{4},\varphi _{5})^{T}\in C, \end{aligned}$$
(7.2)

and

$$\begin{aligned} f(\nu , \varphi )=(\tau _{j}+\nu )\left( \begin{array}{c} -k\varphi _{1}(0)\varphi _{4}(0)-r_{1}\varphi ^{2}_{1}(0)\\ k\varphi _{1}(0)\varphi _{4}(0)\\ -d_{x}\varphi _{3}(0)\varphi _{5}(0)\\ 0 \\ 0 \\ \end{array} \right) \end{aligned}$$
(7.3)

where the matrices \(J_{1}=\mathbf J\) and \(J_{2}=\mathbf K\) are defined in Sect. 4.2. By the Reisz representation theorem, there exists a function \(\xi (\theta ,\nu )\) whose components are of bounded variation for \(\theta \in [-1,0]\) such that

$$\begin{aligned} L_{\nu }\varphi =\int ^{0}_{-1}d\xi (\theta ,\nu )\varphi (\theta ). \end{aligned}$$
(7.4)

In relation to the Eq. (7.2), we choose

$$\begin{aligned} d\xi (\theta ,\nu )=(\tau _{j}+\nu )[J_{1}\overline{\delta }(\theta )-J_{2}\overline{\delta } (\theta +1)], \end{aligned}$$
(7.5)

where \(\overline{\delta }(\theta )\) is the Dirac delta function. Through the relevant expressions for function \(A(\nu )\) and \(R(\nu )\), the system (7.1) can be rewritten as

$$\begin{aligned} \dot{x}_{t}=A(\nu )x_{t}+R(\nu )x_{t}, \end{aligned}$$
(7.6)

where \(x_{t}(\theta )=x(t+\theta )\) for \(\theta \in [-1,0]\). Let \(q(\theta )=(\alpha _{1},~ \alpha _{2},~\alpha _{3},~\alpha _{4}, ~\alpha _{5})^{T}e^{i\omega _{0}\tau _{j}\theta }\) be the eigenvector of A(0) (referred hereafter as A) corresponding to the eigenvalue \( i\omega _{0}\tau _{j}\) then

$$\begin{aligned} Aq(\theta )=i\omega _{0}\tau _{j}q(\theta ), \end{aligned}$$
(7.7)

where, for \(\theta =0\), and \(\alpha _{1}=1\), we get \(\alpha _{2}=\frac{k\overline{V}-(i\omega _{0}+M)}{i\omega _{0}+\mu _{1}+(1-\eta )\alpha }\), \(\alpha _{3}=\frac{(i\omega _{0}+\mu _{v})\alpha _{4}}{N(1-\gamma )\delta }\), \(\alpha _{4}=\frac{(b+\eta \alpha )\alpha _{2}-(i\omega _{0}+M)}{k\overline{T}}\) and \(\alpha _{5}=\frac{pe^{-i\omega _{0}\tau _{j}}\alpha _{3}}{i\omega _{0}+d_{E}}\).

Similarly, assume \(q^{*}(s)=D(\alpha ^{*}_{1},~\alpha ^{*}_{2},~\alpha ^{*}_{3},~\alpha ^{*}_{4},~\alpha ^{*}_{5})^{T}e^{i\omega _{0}\tau _{j}s}\) to be the eigenvector of \(A^{*}\) (the adjoint of A) corresponding to the eigenvalue \(-i\omega _{0}\tau _{j}\), to get

$$\begin{aligned} A^{*}q^{*}(s)=-i\omega _{0}\tau _{j}q^{*}(s), \end{aligned}$$
(7.8)

with \(\alpha ^{*}_{1}=1\), \(\alpha ^{*}_{2}=\frac{-i\omega _{0}+M}{k\overline{V}}\), \(\alpha ^{*}_{3}=\frac{(-i\omega _{0}+\mu _{1}+\alpha +b)\alpha ^{*}_{2}-(b+\eta \alpha )}{(1-\eta )\alpha }\), \(\alpha ^{*}_{4}=\frac{k\overline{T}-k\overline{T}\alpha ^{*}_{2}}{i\omega _{0}-\mu _{v}}\), \(\alpha ^{*}_{5}=\frac{d_{x}\overline{T_{2}}\alpha ^{*}_{3}}{i\omega _{0}-d_{E}}\).

The normalization condition (i.e., \(\left\langle q^{*}(s),q(\theta )\right\rangle = 1)\) yields the value of \(\bar{D}\) as

$$\begin{aligned} \bar{D}[1+\alpha _{2}\overline{\alpha ^{*}_{2}}+\alpha _{3}\overline{\alpha ^{*}_{3}}+\alpha _{4}\overline{\alpha ^{*}_{4}}+\alpha _{5}\overline{\alpha ^{*}_{5}}+\tau _{j}e^{-i\omega _{0}\tau _{j}}\overline{\alpha ^{*}_{5}}\alpha _{3}p]=1, \end{aligned}$$
(7.9)

where the inner product \(< ,>\) is defined as follows.

$$\begin{aligned} \left\langle \varsigma , \varphi \right\rangle =\overline{\varsigma }(0)\varphi (0)-\int ^{0}_{\theta =-1}\int ^{\theta }_{\zeta =0}\overline{\varsigma }(\zeta -\theta )d\xi (\theta )\varphi (\zeta )d\zeta , \end{aligned}$$
(7.10)

where \(\xi (\theta )=\xi (\theta ,0)\).

Following Hassard et al. [35], the coordinates are to be computed to describe the center manifold \(C_{0}\) at \(\nu =0\). Let \(x_{t}\) denotes the solution of Eq. (7.6) for \(\nu =0\). Define

$$\begin{aligned} z(t)=\left\langle q^{*}, x_{t}\right\rangle ,\quad W(t,\theta )=x_{t}(\theta )-2Re\left\{ z(t)q(\theta )\right\} . \end{aligned}$$
(7.11)

On the center manifold \(C_{0}\), \(W(t,\theta )\) is expressed as

$$\begin{aligned} W(t,\theta )=W(z,\overline{z},\theta ) =W_{20}(\theta )\frac{z^{2}}{2}+W_{11}(\theta )z\overline{z}+W_{02}(\theta )\frac{\overline{z^{2}}}{2}+\cdots , \end{aligned}$$
(7.12)

where z and \(\overline{z}\) are local coordinates for center manifold \(C_{0}\) in the direction of \(q^{*}\) and \(\overline{q^{*}}\). Considering only the real solution \(x_{t}\in C_{0}\) of the Eq. (7.6), we get

$$\begin{aligned} \dot{z}=i\omega _{0}\tau _{j}z+\overline{q^{*}}(0).f(0,W(z,\overline{z},0)+2Re\left\{ zq(0)\right\} )=i\omega _{0}\tau _{j}z+g(z,\overline{z}), \end{aligned}$$
(7.13)

where

$$\begin{aligned} g(z,\overline{z})=\overline{q^{*}}(0).f_{0}(z,\overline{z}) =g_{20}\frac{z^{2}}{2}+g_{11}z\overline{z}+g_{02}\frac{\overline{z}^{2}}{2}+\cdots \end{aligned}$$
(7.14)

It follows from (7.11) and (7.12) that

$$\begin{aligned} x_{t}(\theta )= & {} W(z,\overline{z},\theta )+2Re\left\{ zq(\theta )\right\} \nonumber \\= & {} W_{20}(\theta )\frac{z^{2}}{2}+W_{11}(\theta )z\overline{z}+W_{02}(\theta )\frac{\overline{z}^{2}}{2}+z(\alpha _{1},\alpha _{2},\alpha _{3},\alpha _{4},\alpha _{5})^{T}e^{i\omega _{0}\tau _{j}\theta }\nonumber \\&+ \overline{z}(\overline{\alpha _{1}},\overline{\alpha _{2}},\overline{\alpha _{3}}, \overline{\alpha _{4}}, \overline{\alpha _{5}})^{T}e^{-i\omega _{0}\tau _{j}\theta }+\cdots \end{aligned}$$
(7.15)

so that for \(j=1,2,3,4,5\),

$$\begin{aligned} x_{jt}(\theta )=W_{20}^{(j)}(\theta )\frac{z^{2}}{2}+W_{11}^{(j)}(\theta )z\overline{z}+W_{02}^{(j)}(\theta )\frac{\overline{z}^{2}}{2}+z\alpha _{j}e^{i\omega _{0}\tau _{j}\theta }+\overline{z\alpha _{j}}e^{-i\omega _{0}\tau _{j}\theta }. \end{aligned}$$
(7.16)

Now from (7.14),

$$\begin{aligned} g(z,\overline{z})=\tau _{j}\overline{D}(\overline{\alpha ^{*}_{1}},\overline{\alpha ^{*}_{2}},\overline{\alpha ^{*}_{3}},\overline{\alpha ^{*}_{4}},\overline{\alpha ^{*}_{5}}) \left( \begin{array}{c} -kx_{1t}(0)x_{4t}(0)-r_{1}x_{1t}^{2}(0)\\ kx_{1t}(0)x_{4t}(0)\\ -d_{x}x_{3t}(0)x_{5t}(0)\\ 0\\ 0 \end{array}\right) . \end{aligned}$$
(7.17)

The Eq. (7.17) is simplified and compared with (7.14) to get

$$\begin{aligned} g_{20}= & {} 2\tau _{j}\overline{D}((-k\alpha _{4}-r_{1})+k\overline{\alpha _{2}^{*}}\alpha _{4}-d_{x}\overline{\alpha ^{*}_{3}}\alpha _{3}\alpha _{5}), \end{aligned}$$
(7.18)
$$\begin{aligned} g_{11}= & {} 2\tau _{j}\overline{D}((-kRe\alpha _{4}-r_{1})+k\overline{\alpha _{2}^{*}}Re\alpha _{4}-d_{x}\overline{\alpha _{3}^{*}}Re\alpha _{3}\overline{\alpha _{5}}),\end{aligned}$$
(7.19)
$$\begin{aligned} g_{02}= & {} 2\tau _{j}\overline{D}((-k\overline{\alpha _{4}}-r_{1})+k\overline{\alpha _{2}^{*}}\overline{\alpha _{4}}-d_{x}\overline{\alpha _{3}^{*}}\overline{\alpha _{3}}\overline{\alpha _{5}}),\end{aligned}$$
(7.20)
$$\begin{aligned} g_{21}= & {} 2\tau _{j}\overline{D}((-k+\alpha _{2}^{*}k)(2\alpha _{4}W^{(1)}_{11}(0)+2W^{(4)}_{11}(0)\nonumber \\&+\overline{\alpha _{4}}W_{20}^{(1)}(0)+W_{20}^{(4)}(0))-r_{1}2W_{20}^{(1)}(0)\nonumber \\&+4r_{1}W_{11}^{(1)}(0)-d_{x}\overline{\alpha _{3}^{*}}(\overline{\alpha _{3}}W_{20}^{(5)}(0)+\overline{\alpha _{5}}W_{20}^{(3)}(0)\nonumber \\&+2\alpha _{3}W_{11}^{5}(0)+2\alpha _{5}W_{11}^{(3)}(0))). \end{aligned}$$
(7.21)

\(W_{20}(\theta )\) and \(W_{11}(\theta )\), required to compute \(g_{21}\), are derived as follows:

Using the Eqs. (7.11) and (7.13), \(\dot{W}\) is written as

$$\begin{aligned} \dot{W}= & {} \dot{x}_{t}-\dot{z}q-\dot{\overline{z}}~\overline{q}= \left\{ \begin{array}{ll} AW-2Re\left\{ \overline{q^{*}}(0).f_{0}q(\theta )\right\} ,\quad \theta \in [-1,0), &{} \hbox {} \\ AW-2Re\left\{ \overline{q^{*}}(0).f_{0}q(\theta )\right\} +f_{0},\quad \theta =0, &{}\hbox {}\\ \end{array} \right\} \end{aligned}$$
(7.22)
$$\begin{aligned}\equiv & {} AW + H(z,\overline{z},\theta );~~~ H(z,\overline{z},\theta )=H_{20}(\theta )\frac{z^{2}}{2}+H_{11}(\theta )z\overline{z}+H_{02}\frac{\overline{z}^{2}}{2}+\cdots \qquad \qquad \end{aligned}$$
(7.23)

Using chain rule \(\dot{W}=W_{z}\dot{z}+W_{\overline{z}}\dot{\overline{z}}\), the Eqs. (7.13) and (7.23) yields

$$\begin{aligned} (A-2i\omega _{0}\tau _{j})W_{20}=-H_{20},\quad AW_{11}=-H_{11}. \end{aligned}$$
(7.24)

For \(\theta \in [-1,0)\), we have

$$\begin{aligned} H(z,\overline{z},\theta )= & {} -\overline{q^{*}}(0).f_{0}q(\theta )-q^{*}(0).\overline{f_{0}}\overline{q}(\theta ) =-g(z,\overline{z})q(\theta )-\overline{g}(z,\overline{z})\overline{q}(\theta ),\nonumber \\= & {} -(g_{20}q(\theta )+\overline{g_{02}}~\overline{q}(\theta ))\frac{z^{2}}{2}-(g_{11}q(\theta )+\overline{g_{11}}~\overline{q}(\theta ))z\overline{z}+\cdots , \end{aligned}$$
(7.25)

which, on comparing the coefficients with (7.23), gives

$$\begin{aligned} H_{20}(\theta )= & {} -g_{20}q(\theta )-\overline{g_{02}}~\overline{q}(\theta ), \end{aligned}$$
(7.26)
$$\begin{aligned} H_{11}(\theta )= & {} -g_{11}q(\theta )-\overline{g_{11}}\overline{q}(\theta ). \end{aligned}$$
(7.27)

From (7.24), (7.26) and the definition of A,

$$\begin{aligned} W_{20}^{'}(\theta )=2i\omega _{0}\tau _{j}W_{20}(\theta )+g_{20}q(\theta )+\overline{g_{02}}\overline{q}(\theta ). \end{aligned}$$
(7.28)

Noting \(q(\theta )=q(0)e^{i\omega _{0}\tau _{j}\theta },\) hence

$$\begin{aligned} W_{20}(\theta )=\frac{ig_{20}}{\omega _{0}\tau _{j}}q(\theta )+\frac{i\overline{g_{02}}}{3\omega _{0}\tau _{j}}\overline{q}(\theta )+E_{1}e^{2i\omega _{0}\tau _{j}\theta }. \end{aligned}$$
(7.29)

Similarly, we have

$$\begin{aligned} W_{11}(\theta )=-\frac{ig_{11}}{\omega _{0}\tau _{j}}q(\theta )+\frac{i\overline{g_{11}}}{\omega _{0}\tau _{j}}\overline{q}(\theta )+E_{2}, \end{aligned}$$
(7.30)

where \(E_{1}=(E_{1}^{(1)}, E_{1}^{(2)},E_{1}^{(3)},E_{1}^{(4)},E_{1}^{(5)})\) and \(E_{2}=(E_{2}^{(1)}, E_{2}^{(2)},E_{2}^{(3)},E_{2}^{(4)},E_{2}^{(5)})\) \(\in R^{5}\) are constant vectors, to be determined. It follows from the definition of A and (7.24) that

$$\begin{aligned} \int _{0}^{-1}d\xi (\theta )W_{20}(\theta )= & {} 2i\omega _{0}\tau _{j}W_{20}(0)-H_{20}(0), \end{aligned}$$
(7.31)
$$\begin{aligned} \int _{-1}^{0}d\xi (\theta )W_{11}(\theta )= & {} -H_{11}(0). \end{aligned}$$
(7.32)

From Eqs. (7.22) and (7.23),

$$\begin{aligned} H_{20}(0)=-g_{20}q(0)-\overline{g}_{02}~\overline{q}(0)+2\tau _{j} \left( \begin{array}{c} -k\alpha _{4}-r_{1}\\ k\alpha _{4}\\ -d_{x}\alpha _{3}\alpha _{5}\\ 0\\ 0 \end{array}\right) \end{aligned}$$
(7.33)

and

$$\begin{aligned} H_{11}(0)=-g_{11}q(0)-\overline{g}_{11}~\overline{q}(0)+2\tau _{j} \left( \begin{array}{c} -kRe\alpha _{4}-r_{1}\\ kRe\alpha _{4}\\ -d_{x}Re\alpha _{3}\overline{\alpha _{5}}\\ 0\\ 0 \end{array}\right) . \end{aligned}$$
(7.34)

Using (7.29) and (7.33) in (7.31) and noting that \(q(\theta )\) is eigenvector of A, we have

$$\begin{aligned}&\left( \begin{array}{ccccc} 2i\omega _{0}+M &{}\quad -(\eta \alpha +b) &{}\quad 0 &{}\quad k\overline{T} &{}\quad 0\\ -k\overline{V}&{}\quad 2i\omega _{0}+\mu _{1}+\alpha +b &{}\quad 0&{}\quad -k\overline{T} &{}\quad 0\\ 0 &{}\quad -(1-\eta )\alpha &{}\quad 2i\omega _{0}+\delta +d_{x}\overline{E} &{}\quad 0&{}\quad d_{x}\overline{T_{2}}\\ 0&{}\quad 0&{}\quad -N(1-\gamma )\delta &{}\quad 2i\omega _{0}+\mu _{v} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad -e^{-2i\omega _{0}\tau _{j}}p &{}\quad 0 &{}\quad 2i\omega _{0}+d_{E} \end{array}\right) \left( \begin{array}{c} E^{(1)}_{1}\\ E^{(2)}_{1}\\ E^{(3)}_{1}\\ E^{(4)}_{1}\\ E^{(5)}_{1} \end{array}\right) \nonumber \\&\quad = 2 \left( \begin{array}{c} -k\alpha _{4}-r_{1}\\ k\alpha _{4}\\ -d_{x} \alpha _{3} \alpha _{5}\\ 0\\ 0 \end{array}\right) . \end{aligned}$$
(7.35)

Similarly, using (7.30) and (7.34) in (7.32), we have

$$\begin{aligned} \left( \begin{array}{ccccc} M &{}\quad -(\eta \alpha +b) &{}\quad 0 &{}\quad k\overline{T} &{}\quad 0\\ -k\overline{V}&{}\quad \mu _{1}+\alpha +b &{}\quad 0&{}\quad -k\overline{T} &{}\quad 0\\ 0 &{}\quad -(1-\eta )\alpha &{}\quad 2i\omega _{0}+\delta +d_{x}\overline{E} &{}\quad 0&{}\quad d_{x}\overline{T_{2}}\\ 0&{}\quad 0&{}\quad -N(1-\gamma )\delta &{}\quad \mu _{v} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad -p &{}\quad 0 &{}\quad 2d_{E} \end{array}\right) \left( \begin{array}{c} E^{(1)}_{2}\\ E^{(2)}_{2}\\ E^{(3)}_{2}\\ E^{(4)}_{2}\\ E^{(5)}_{2} \end{array}\right) = 2 \left( \begin{array}{c} -kRe \alpha _{4}-r_{1}\\ kRe \alpha _{4}\\ -d_{x} Re\alpha _{3}\overline{ \alpha _{5}}\\ 0\\ 0 \end{array}\right) . \end{aligned}$$
(7.36)

The systems (7.35) and (7.36) are solved for \(E_{1}\) and \(E_{2}\), respectively. Then, \(g_{21}\) is calculated from (7.21), through the expressions (7.29) for \(W_{20}\) and (7.30) for \(W_{11}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, D., Sharma, M.D. Effect of Delayed Immune Response on the Dynamics of HIV Infection Under Multidrug Treatment. Differ Equ Dyn Syst 30, 61–84 (2022). https://doi.org/10.1007/s12591-018-0440-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-0440-8

Keywords

Navigation