Skip to main content

Advertisement

Log in

Study of Public Health Education Effect on Spread of HIV Infection in a Density-Dependent Transmission Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

A nonlinear density-dependent mathematical model is proposed to study the effect of public health education on spread of HIV infection. In this model the host population is divided into seven sub-classes of educated and non-educated susceptibles, HIV infective in asymptomatic and symptomatic phases, and that of AIDS patients. The model exhibits two equilibrium points namely, a disease free and an endemic equilibrium. The model has been studied qualitatively using stability theory of nonlinear differential equations. We have found threshold parameters, the basic reproduction number \(\mathcal {R}_{0}\) for the HIV/AIDS in the absence of public health education and education-including basic reproduction number \(\mathcal {R}_{E}\) for the model with public health education. We have proved that if education-including basic reproduction number is less than one, the disease free equilibrium is locally asymptotically stable otherwise for \(\mathcal {R}_{E}>1\) the infection will be prevalent in the population. By comparing threshold parameters \(\mathcal {R}_{0}\) and \(\mathcal {R}_{E}\), the effect of public health education can be observed. Based upon the presented results of this paper, we can conclude that in a population where public health education is not effective or when the basic reproduction number \(R_0\) is large, HIV/AIDS can not be controlled using public health education alone. Numerical study of the model is also performed to investigate the influence of certain key parameters on the spread of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization. UNAIDS Report on the global AIDS epidemic. http://unaids.org (2004)

  2. Samanta, G.P.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Nonlinear Anal. Real 12(2), 1163–1177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. The HIV–TB reports. World Health Organization. http://www.who.int/en/ (2010)

  4. Srivastava, P.K., Banerjee, M., Chandra, P.: Dynamical model of in-host HIV infection: with drug therapy and multi viral strains. J. Biol. Syst. 20(3), 303–325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, Y., Xiao, Y.: Threshold dynamics for an HIV model in periodic environments. J. Math. Anal. Appl. 361(1), 59–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Levy, J.A.: Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev. 57(1), 183–289 (1993)

    Article  Google Scholar 

  7. Stoddart, C.A., Reyes, R.A.: Models of HIV-1 disease: a review of current status. Drug. Discov. Today 3(1), 113–119 (2006)

    Google Scholar 

  8. May, R.M., Anderson, R.M.: Transmission dynamics of HIV infection. Nature 326(12), 137–142 (1987)

    Article  Google Scholar 

  9. Anderson, R.M.: The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. J. Acq. Immun. Def. Synd. 1(3), 241–256 (1988)

    MathSciNet  Google Scholar 

  10. Anderson, R.M., Medly, G.F., May, R.M., Johnson, A.M.: A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. Math. Med. Biol. 3(4), 229–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Samanta, G.P.: Analysis of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Math. Model. Anal. 15(3), 327–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Samanta, G.P.: Analysis of a nonautonomous HIV/AIDS model. Math. Model. Nat. Phenom. 5(6), 70–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sharma, S., Samanta, G.P.: Dynamical behaviour of an HIV/AIDS epidemic model. Differ. Equ. Dyn. Syst. 22(4), 369–395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bachar, M., Dorfmayr, A.: HIV treatment models with time delay. C R Biol. 327(11), 983–994 (2004)

    Article  Google Scholar 

  15. Blower, S.: Calculating the consequences: HAART and risky sex. AIDS 15(10), 1309–1310 (2001)

    Article  Google Scholar 

  16. McCluskey, C.: A model of HIV/AIDS with staged progression and amelioration. Math. Biosci. 181(1), 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hethcote, H.W., Van Ark, J.W.: Modelling HIV Transmission and AIDS in the United States. Springer-Verlag, Berlin, vol. 95 (1992)

  18. Hsieh, Y.H., Chen, C.H.: Modelling the social dynamics of a sex industry: its implications for spread of HIV/AIDS. Bull. Math. Biol. 66(1), 143–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leenheer, P.D., Smith, H.L.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4), 1313–1327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L., Li, M.Y.: Mathematical analysis of the global dynamics of a model for HIV infection of \(CD4^{+} T-cells\). Math. Biosci. 200(1), 44–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, K., Wang, W., Liu, X.: Viral infection model with periodic lytic immune response. Chaos Solitons Fract. 28(1), 90–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Del Valle, S., Evangelista, A.M., Velasco, M.C., Kribs-Zaleta, C.M., Hsu Schmitz, S.F.: Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity. Math. Biosci. 187(2), 111–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ostadzad, M.H., Shahmorad, S., Erjaee, G.H.: Dynamical analysis of public health education on HIV/AIDS transmission. Math. Method. Appl. Sci. 38(17), 3601–3614 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mukandavire, Z., Chiyaka, C., Garira, W.: Asymptotic properties of an HIV/AIDS model with a time delay. J. Math. Anal. Appl. 330(2), 916–933 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hussaini, N., Winter, A.: Qualitative assessment of the role of public health education program on HIV transmission dynamics. IMA J. Math. Appl. Med. Biol. 28(3), 245–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cai, L., Li, X., Ghosh, M., Guo, B.: Stability analysis of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math. 229(1), 313–323 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \({\cal R}_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Perko, L.: Differential Equations and Dynamical Systems. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  31. Hale, J.K., Kocak, H.: Dynamics and Bifurcation. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  32. Mukandavire, Z., Garira, W., Tchuenche, J.M.: Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics. Appl. Math. Model. 33(4), 2084–2095 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This publication was made possible by NPRP Grant NPRP 6-137-1-026 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Erjaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostadzad, M.H., Shahmorad, S. & Erjaee, G.H. Study of Public Health Education Effect on Spread of HIV Infection in a Density-Dependent Transmission Model. Differ Equ Dyn Syst 28, 201–215 (2020). https://doi.org/10.1007/s12591-016-0310-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0310-1

Keywords

Mathematics Subject Classification

Navigation