Skip to main content
Log in

Lower Semicontinuity of Global Attractors for a Class of Evolution Equations of Neural Fields Type in a Bounded Domain

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this work we consider the nonlocal evolution equation

$$\displaystyle \frac{\partial u(w,t)}{\partial t}=-u(w,t)+ \int _{S^{1}}J(wz^{-1})f(u(z,t))\mathrm{d}z+ h, \quad h > 0,$$

which arises in models of neuronal activity, in \(L^{2}(S^{1})\), where \(S^{1}\) denotes the unit sphere. We obtain more interesting results on existence of global attractors and the associate Lypaunov functional than the already existing in the literature. Furthermore, we prove the result, not yet known in the literature, of lower semicontinuity of global attractors with respect to connectivity function J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MathSciNet  Google Scholar 

  2. Arrieta, J.M., Carvalho, A.N.: Spectral convergence and nonlinear dynamics of reaction–diffusion equations under perturbations of the domain. J. Differ. Equ. 199, 143–178 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ball, J.M.: Saddle point analysis for an ordinary differential equations in Banach space and applications to buckling of a beam. In: Dickey, R.W. (ed.) Nonlinear Elasticity, pp. 937–948. Academic Press, New York (1973)

    Google Scholar 

  4. Bates, P.W., Lu, K., Zeng, C.: Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Am. Math. Soc. 135(645) (1998)

    Article  MathSciNet  Google Scholar 

  5. Bezerra, F.D.M., Pereira, A.L., da Silva, S.H.: Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equation with non local terms. J. Math. Anal. Appl. 396, 590–600 (2012)

    Article  MathSciNet  Google Scholar 

  6. Butkov, E.: Mathematical Physic. Addison-Wesley Publishing Company Inc., Reading (1968)

    MATH  Google Scholar 

  7. Chen, F.: Travelling waves for a neural network. Electron. J. Differ. Equ. 2003(13), 1–14 (2003)

    MathSciNet  Google Scholar 

  8. Coombes, S., Schmidt, H., Bojak, I.: Interface dynamics in planar neural field models. J. Math. Neurosci. 2(9), 1–27 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Daleckii, J.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banch Space. American Mathematical Society, Providence (1974)

    Google Scholar 

  10. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Stability of the interface in a model of phase separation. Proc. R. Soc. Edinb. 124(5), 1013–1022 (1994)

    Article  MathSciNet  Google Scholar 

  11. Ermentrout, G.B., McLeod, J.B.: Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinb. 123A, 461–478 (1993)

    Article  MathSciNet  Google Scholar 

  12. Ermentrout, G.B., Jalics, J.Z., Rubin, J.E.: Stimulus-driven travelling solutions in continuum neuronal models with general smoth firing rate function. SIAM J. Appl. Math. 70, 3039–3064 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hale, J.K.: Asymptotic Behavior of Dissipative Systems, American Surveys and Monographs, vol. 25. American Mathematical Society, Providence (1988)

    Google Scholar 

  14. Hale, J.K., Raugel, G.: Convergence in gradient-like systems with applications to PDE. Z. Angew. Math. Phys. 43, 63–124 (1992)

    Article  MathSciNet  Google Scholar 

  15. Kishimoto, K., Amari, S.: Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol. 07, 303–1979 (1979)

    Article  MathSciNet  Google Scholar 

  16. Krisner, E.P.: The link between integral equations and higher order ODEs. J. Math. Anal. Appl. 291, 165–179 (2004)

    Article  MathSciNet  Google Scholar 

  17. Kubota, S., Aihara, K.: Analyzing global dynamics of a neural field model. Neural Process. Lett. 21, 133–141 (2005)

    Article  Google Scholar 

  18. Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B.: Multiple bumps in a neural model of working memory. SIAM J. Appl. Math. 63(1), 62–97 (2002)

    Article  MathSciNet  Google Scholar 

  19. Oliveira, L.A.F., Pereira, A.L., Pereira, M.C.: Continuity of attractors for a reaction–diffusion problem with respect to variations of the domain. Electron. J. Differ. Equ. 2005(100), 1–18 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Pereira, A.L., Pereira, M.C.: Continuity of attractors for a reaction diffusion problem with nonlinear boundary conditions with respect to variations of the domain. J. Differ. Equ. 239, 343–370 (2007)

    Article  MathSciNet  Google Scholar 

  21. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math. 62(1), 226–243 (2001)

    Article  MathSciNet  Google Scholar 

  22. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math. 62(1), 226–243 (2001)

    Article  MathSciNet  Google Scholar 

  23. Pereira, A.L., da Silva, S.H.: Continuity of global attractor for a class of non local evolution equation. Discret. Contin. Din. Syst. 26(3), 1073–1100 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Rubin, J.E., Troy, W.C.: Sustained spatial patterns of activity in neural populations without recurrent excitation. SIAM J. Appl. Math. 64(5), 1609–1635 (2004)

    Article  MathSciNet  Google Scholar 

  25. Rudin, W.: Functional Analysis. McGraw-Hill Inc., New York (1991)

    MATH  Google Scholar 

  26. Ruktamatakul, S., Yimprayoon, P.: Traveling wave front solutions in lateral-excitatory neuronal networks. Songklanakarin J. Sci. Technol. 30(3), 313–321 (2008)

    Google Scholar 

  27. da Silva, S.H., Pereira, A.L.: Global attractors for neural fields in a weighted space. Mat. Contemp. 36, 139–153 (2009)

    MathSciNet  MATH  Google Scholar 

  28. da Silva, S.H.: Existence and upper semicontinuity of global attractors for neural fields in an unbounded domain. Electron. J. Differ. Equ. 2010(138), 1–12 (2010)

    MathSciNet  Google Scholar 

  29. da Silva, S.H.: Existence and upper semicontinuity of global attractors for neural network in a bounded domain. Differ. Equ. Dyn. Syst. 19(1,2), 87–96 (2011)

    Article  MathSciNet  Google Scholar 

  30. da Silva, S.H., Pereira, A.L.: Exponential trichotomies and continuity of invariant manifolds. Sao Paulo J. Math. Sci. 5(2), 1–24 (2011)

    MathSciNet  MATH  Google Scholar 

  31. da Silva, S.H.: Properties of an equation for neural fields in a bounded domain. Electron. J. Differ. Equ. 2012(42), 1–9 (2012)

    MathSciNet  Google Scholar 

  32. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referees for his/her reading of the manuscript and valuable suggestions. He also wishes to thank the professors Antônio Luiz Pereira (USP) and Flank Bezerra (UFPB) for discussions on this model. Our gratitude goes also to Oxford International English (Campina Grande) that checked the English usage this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severino Horácio da Silva.

Additional information

The author dedicates this work to Arthur and Luana.

Partially supported by CAPES/CNPq-Brazil Grant Casadinho/Procad 552.464/2011-2 and INCTMat 5733523/2008-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.H. Lower Semicontinuity of Global Attractors for a Class of Evolution Equations of Neural Fields Type in a Bounded Domain. Differ Equ Dyn Syst 26, 371–391 (2018). https://doi.org/10.1007/s12591-015-0258-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0258-6

Keywords

Mathematics Subject Classification

Navigation