Skip to main content
Log in

Synthesis and characterization of MDI and functionalized polystyrene based poly(urethane-urea-amide)

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

This article describes the synthesis of 4,4′-methylenediphenyl diisocyanate (MDI) based polyurethane-ureas-amide using diamine-diamide chain extenders and dihydroxy polystyrene (PSt) having a weight average molecular weight of 2000 g/mol. The weight average molecular weight of the soft segment is varied from 2000 to 10,000 g/mol using MDI as a chain extender and thereby changing the hard segment content from 30 to 17 wt% in the copolymer. The inherent viscosity of the polymer is found to be in the range of 1.6–3.4 dL/g is suggesting that the polymer is of high molecular weight. FT-IR results conclude that the urea groups form monodentate assemblies. DSC data show the peaks for Tg of soft and Tm of hard segments. Depending on the amide concentration, the melting temperature of the polymer varies from 189 to 249 °C. Also, at high concentration of the hard segment, the cooling curve shows crystallization exotherm peak. The entire series of polymer shows single stage decomposition temperature centered around 400 °C shown by the TGA measurement. The solubility of the polymer in chloroform and swelling ratio is depending on the concentration of the hard segment. The studied polymer shows excellent solvent resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Król P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915–1015

    Article  Google Scholar 

  2. Wang CB, Cooper SL (1983) Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 16:775–786

    Article  CAS  Google Scholar 

  3. Rogers ME, Long TE (2003) Synthetic methods in step-growth polymers, vol 4. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  4. Zhang Q, He H, Xi K, Huang X, Yu X, Jia X (2011) Synthesis of N-Phenylaminomethyl POSS and Its Utilization in Polyurethane. Macromolecules 44:550–557

    Article  CAS  Google Scholar 

  5. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or Pandora’s box? Science 336:434–440

    Article  CAS  Google Scholar 

  6. Russell TP, Karis TE, Gallot Y, Mayes AM (1994) A lower critical ordering transition in a diblock copolymer melt. Nature 368:729–731

    Article  CAS  Google Scholar 

  7. Zhang L, Eisenberg A (1995) Chemically induced supramolecular reorganization of triblock copolymer assemblies: trapping of intermediate states via a shell-crosslinking methodology. Science 268:1728–1731

    Article  CAS  Google Scholar 

  8. Li Y, Ren Z, Zhao M, Yang H, Chu B (1993) Multiphase structure of segmented polyurethanes: effects of hard-segment flexibility. Macromolecules 26:612–622

    Article  CAS  Google Scholar 

  9. Li Y, Kang W, Stoffer JO, Chu B (1994) Effect of hard-segment flexibility on phase separation of segmented polyurethanes. Macromolecules 27:612–614

    Article  CAS  Google Scholar 

  10. Lee DK, Tsai HB (2000) Properties of segmented polyurethanes derived from different diisocyanate. J Appl Polym Sci 75:167–174

    Article  CAS  Google Scholar 

  11. Gao R, Zhang M, Wang SW, Moore RB, Colby RH, Long TE (2013) Polyurethanes containing an imidazolium diol-based ionic-liquid chain extender for incorporation of ionic-liquid electrolytes. Macromol Chem Phys 214:1027–1036

    Article  CAS  Google Scholar 

  12. Biemond GJE, Brasspenning K, Gaymans RJ (2012) Synthesis and selected properties of polyurethanes with monodisperse hard segments based on hexane diisocyanate and three types of chain extender. J Appl Polym Sci 124:1302–1315

    Article  CAS  Google Scholar 

  13. Chang Z, Zhang M, Amanda G, Hudson E, Orler B, Robert B, Moore GL, Wilkes S, Turner R (2013) Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer 54:6910–6917

    Article  CAS  Google Scholar 

  14. He Y, Zhang X, Runt J (2014) The role of diisocyanate structure on microphase separation of solution polymerized polyureas. Polymer 55:906–913

    Article  CAS  Google Scholar 

  15. Kayalvizhi M, Vakees E, Suresh J, Nagarajan S, Arun A (2014) Spacer length controlled hghly thermo reversible polyurethane-urea based on polystyrene: synthesis and crystallization studies. Polym Adv Technol 26:160–166

    Article  Google Scholar 

  16. Kayalvizhi M, Vakees E, Suresh J, Arun A (2015) Poly(urethane-urea) based on functionalized polystyrene with HMDI: synthesis and charecterisation. Arab J Chem. doi:10.1016/j.arbjc.2015.04.005

    Google Scholar 

  17. Van der Schuur M, Feijen J, Gaymans RJ (2005) Synthesis and characterization of bisester-amide segments of uniform and random length. Polymer 46:4584–4595

    Article  Google Scholar 

  18. Van der Schuur M, Noordover B, Gaymans RJ (2006) Polyurethane elastomers with amide chain extenders of uniform length. Polymer 47:1091–1100

    Article  Google Scholar 

  19. Vakees E, Suresh J, Kayalvizhi M, Srinivasan VV, Arun A (2013) Synthesis and characterization of functionalized polystyrene using ATRP with strong base technique. IOSR-J Appl Chem 7(4):32–38

    Article  Google Scholar 

  20. Krijgsman J, Husken D, Gaymans RJ (2003) Synthesis and characterisation of uniform bisester tetra-amide segments. Polymer 44:7043–7053

    Article  CAS  Google Scholar 

  21. Yilgör E, Burgaz E, Yurtsever E, Yilgör L (2000) Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers. Polymer 41:849–857

    Article  Google Scholar 

  22. Oertel G (1985) Polyurethane Handbook. Carl Hanser, Munich, p 31

    Google Scholar 

  23. Kayalvizhi M, Vakees E, Suresh J, Arun A (2015) Manuscript send to Journal

  24. Desai S, Thakore IM, Sarawade BD, Devi S (2000) Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. Eur Polym J 36:711–725

    Article  CAS  Google Scholar 

  25. Ya-Jen Yu (2011) The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. National Taiwan University, Taiwan

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Department of Science and Technology (DST), India for their financial support under Fast Track Scheme for Young Scientists to Dr.A.Arun (No.SR/FT/CS-018/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Araichimani Arun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayalvizhi, M., Suresh, J., Karthik, S. et al. Synthesis and characterization of MDI and functionalized polystyrene based poly(urethane-urea-amide). Int J Plast Technol 20, 128–142 (2016). https://doi.org/10.1007/s12588-016-9145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-016-9145-4

Keywords

Navigation