Skip to main content
Log in

Carbon Isotope Stratigraphy of the Uppermost Aptian–Lower Cenomanian Strata from the Lut Block, East Iran

  • Paleontology and Paleoenvironment
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Mid-Cretaceous interval has been recognized as a crucial period in Earth’s history, and a number of studies on Neo-Tethyan successions illustrate intense evolutions in the nature of Mid-Cretaceous ocean chemistry, sea level, and marine faunal communities. However, much less investigations have been conducted in the Sistan Ocean, in the eastern Neo-Tethys. Here, the Nimbolook Section (Lut Block, central Iran) has provided an opportunity to address these shortcomings and provide a better understanding of the paleoenvironmental changes in this region. The biostratigraphic analysis and age interpretation of the Nimbolook Section have been performed in earlier investigations by means of planktonic foraminifera, ammonites and calcareous nannofossils. This provides a reliable age framework for the chemostratigraphic interpretations. In the Nimbolook Section, the δ13C stratigraphy was carried out on a total of 41 samples, which ranged between −3.26‰ and 2.86‰ with an average of 1.09‰ (standard deviation = 1.15‰), and expanded within the upper Aptian to lower Cenomanian stages. However, there is a prominent negative shift at the base of the section, accompanied by episodes of sea-level fluctuations. Notably, according to the age-diagnostic calcareous nannofossils records, this carbon isotope negative shift (0.88‰ to −3.26‰) straddle between late Aptian and early Albian ages. Furthermore, these new chemostratigraphic observations could be interpreted as being the coeval data from the reference well-studied successions in the other parts of the world, tentatively reflecting the oceanic anoxic event (OAE) 1b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alavi Naini, M., Behruzi, A., Berthiaux, A., et al., 1981. Geological Map of the Qayen, Scale 1/100 000, 1 Sheet. Geological Survey of Iran, Tehran

    Google Scholar 

  • Alexandre, J. T., Van Gilst, R. I., Rodríguez-López, J. P., et al., 2011. The Sedimentary Expression of Oceanic Anoxic Event 1b in the North Atlantic. Sedimentology, 58(5): 1217–1246. https://doi.org/10.1111/j.1365-3091.2010.01202.x

    Article  Google Scholar 

  • Babazadeh, S. A., Raisossadat, S. N., Ahrari, F., 2010. Biostratigraphy and Evolutionary Study of the Cretaceous Orbitolinids in the Sedimentary Deposits of East Lut, South West of Qayen. Sedimentary Facies, 3(1): 1–10 (in Persian with English Abstract)

    Google Scholar 

  • Barrier, E., Vrielynck, B., 2008. Map 5: Cenomanian (99.6–93.5 Ma). In: Barrier, E., Vrielynck, B., eds., Palaeotectonic Maps of the Middle East-Tectonosedimentary-Palinspastic Maps from the Late Norian to Pliocene. Commission for the Geological Map of the World (CGMW/CCGM), Paris

    Google Scholar 

  • Berthiaux, A., Christmann, P., Fauvelet, E., et al., 1991. Quadrangle Geological Map of Qayen. Scale: 1/250 000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Bodin, S., Meissner, P., Janssen, N. M. M., et al., 2015. Large Igneous Provinces and Organic Carbon Burial: Controls on Global Temperature and Continental Weathering during the Early Cretaceous. Global and Planetary Change, 133: 238–253. https://doi.org/10.1016/j.gloplacha.2015.09.001

    Article  Google Scholar 

  • Bornemann, A., Norris, R. D., Friedrich, O., et al., 2008. Isotopic Evidence for Glaciation during the Cretaceous Supergreenhouse. Science, 319(5860): 189–192. https://doi.org/10.1126/science.1148777

    Article  Google Scholar 

  • Bottini, C., Mutterlose, J., 2012. Integrated Stratigraphy of Early Aptian Black Shales in the Boreal Realm: Calcareous Nannofossil and Stable Isotope Evidence for Global and Regional Processes. Newsletters on Stratigraphy, 45(2): 115–137. https://doi.org/10.1127/0078-0421/2012/0017

    Article  Google Scholar 

  • Bralower, T. J., Sliter, W. V., Arthur M. A., et al., 1993. Dysoxic/Anoxic Episodes in the Aptian-Albian (Early Cretaceous). In: Pringle, M. S., Sager, W. W., Sliter, W. V., et al., eds., The Mesozoic Pacific: Geology, Tectonics and Volcanism. Geophysical Monograph Series, 77: 5–37. https://doi.org/10.1029/gm077p0005

    Google Scholar 

  • Bröcker, M., Fotoohi Rad, G., Burgess, R., et al., 2013. New Age Constraints for the Geodynamic Evolution of the Sistan Suture Zone, Eastern Iran. Lithos, 170/171: 17–34. https://doi.org/10.1016/j.lithos.2013.02.012

    Article  Google Scholar 

  • Chaabane, N. B., Khemiri, F., Soussi, M., et al., 2019. Aptian-Lower Albian Serdj Carbonate Platform of the Tunisian Atlas: Development, Demise and Petroleum Implication. Marine and Petroleum Geology, 101: 566–591. https://doi.org/10.1016/j.marpetgeo.2018.10.036

    Article  Google Scholar 

  • Coccioni, R., Sabatino, N., Frontalini, F., et al., 2014. The Neglected History of Oceanic Anoxic Event 1b: Insights and New Data from the Poggio le Guaine Section (Umbria-Marche Basin). Stratigraphy, 11: 245–282

    Google Scholar 

  • El-Shazly, S., Košt’ák, M., Kloučková, B., et al., 2011. Carbon and Oxygen Stable Isotopes of Selected Cenomanian and Turonian Rudists from Egypt and Czech Republic, and a Note on Changes in Rudist Diversity. Bulletin of Geosciences: 209 – 226. https://doi.org/10.3140/bull.geosci.1151

  • Erbacher, J., Hemleben, C., Huber, B. T., et al., 1999. Correlating Environmental Changes during Early Albian Oceanic Anoxic Event 1B Using Benthic Foraminiferal Paleoecology. Marine Micropaleontology, 38(1): 7–28. https://doi.org/10.1016/s0377-8398(99)00036-5

    Article  Google Scholar 

  • Erbacher, J., Huber, B. T., Norris, R. D., et al., 2001. Increased Thermohaline Stratification as a Possible Cause for an Ocean Anoxic Event in the Cretaceous Period. Nature, 409(6818): 325–327. https://doi.org/10.1038/35053041

    Article  Google Scholar 

  • Erfani, M. A., Motamedalshariait, M., Raisossadat, S. N., et al., 2019. Systematics and Biostratigraphy of Foraminifera in Albian to Lower Cenomanian Deposits at Kerch Section (Southwest Qayen). Kharazmi Journal of Earth Sciences, 4(2): 169–198. https://doi.org/10.29252/gnf.4.2.169

    Article  Google Scholar 

  • Fauvelet, E., Eftekhar-Nezhad, J., 1990. Explanatory Text of the Qayen, Quadrangle Map 1: 250 000. Geological Survey of Iran, Tehrn

    Google Scholar 

  • Gale, A. S., Kennedy, W. J., Burnett, J. A., et al., 1996. The Late Albian to Early Cenomanian Succession at Mont Risou near Rosans (Drôme, SE France): An Integrated Study (Ammonites, Inoceramids, Planktonic Foraminifera, Nannofossils, Oxygen and Carbon Isotopes). Cretaceous Research, 17(5): 515–606. https://doi.org/10.1006/cres.1996.0032

    Article  Google Scholar 

  • Herrle, J. O., Kößler, P., Friedrich, O., et al., 2004. High-Resolution Carbon Isotope Records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): A Stratigraphic Tool for Paleoceanographic and Paleobiologic Reconstruction. Earth and Planetary Science Letters, 218(1/2): 149–161. https://doi.org/10.1016/s0012-821x(03)00646-0

    Article  Google Scholar 

  • Herrle, J. O., Mutterlose, J., 2003. Calcareous Nannofossils from the Aptian-Lower Albian of Southeast France: Palaeoecological and Biostratigraphic Implications. Cretaceous Research, 24(1): 1–22. https://doi.org/10.1016/s0195-6671(03)00023-5

    Article  Google Scholar 

  • Herrle, J. O., Pross, J., Friedrich, O., et al., 2003. Forcing Mechanisms for Mid-Cretaceous Black Shale Formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology, 190: 399–426. https://doi.org/10.1016/s0031-0182(02)00616-8

    Article  Google Scholar 

  • Huber, B. T., MacLeod, K. G., Gröcke, D. R., et al., 2011. Paleotemperature and Paleosalinity Inferences and Chemostratigraphy across the Aptian/Albian Boundary in the Subtropical North Atlantic. Paleoceanography, 26(4): PA4221. https://doi.org/10.1029/2011pa002178

    Article  Google Scholar 

  • Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): 1–30. https://doi.org/10.1029/2009gc002788

    Article  Google Scholar 

  • Jenkyns, H. C., Gale, A., Corfield, R., 1994. Carbon- and Oxygen-Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance. Geological Magazine, 131: 1–34. https://doi.org/10.1017/s0016756800010451

    Article  Google Scholar 

  • Jenkyns, H. C., Wilson, P. A., 1999. Stratigraphy, Paleoceanography, and Evolution of Cretaceous Pacific Guyots; Relics from a Greenhouse Earth. American Journal of Science, 299(5): 341–392. https://doi.org/10.2475/ajs.299.5.341

    Article  Google Scholar 

  • Kennedy, W. J., Gale, A. S., Bown, P. R., et al., 2000. Integrated Stratigraphy across the Aptian-Albian Boundary in the Marnes Bleues, at the Col de PRÉ -Guittard, Arnayon (Drôme), and at Tartonne (Alpes-de-Haute-Provence), France: A Candidate Global Boundary Stratotype Section and Boundary Point for the Base of the Albian Stage. Cretaceous Research, 21(5): 591–720. https://doi.org/10.1006/cres.2000.0223

    Article  Google Scholar 

  • Kennedy, W. J., Gale, A. S., Lees, J. A., et al., 2004. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes, 27(1): 21–32. https://doi.org/10.18814/epiiugs/2004/v27i1/003

    Article  Google Scholar 

  • Khazaei, A. R., Raisossadat, S. N., Asadi, S., 2011. Rudist Bivalves (Requieniidae Family) in Early Cretaceous Sediments from SW Qayen, Eastern Iran, Paleobiogeographic Aspects. Sedimentary Facies, 3(2): 52–67 (in Persian with English Abstract)

    Google Scholar 

  • Latifi, Z., Foroughi, F., Motamedalshariati, M., et al., 2018. Calcareous Nannofossils Biostratigraphy of Lower Cretaceous Deposits at the East of Iran, NW of Qayen (Nimbolook Stratigraphic Section). Geoscience, 27(106): 41–50 (in Persian with English Abstract)

    Google Scholar 

  • Leckie, R. M., Bralower, T. J., Cashman, R., 2002. Oceanic Anoxic Events and Plankton Evolution: Biotic Response to Tectonic Forcing during the Mid-Cretaceous. Paleoceanography, 17(3): 13. https://doi.org/10.1029/2001pa000623

    Article  Google Scholar 

  • Machado, M. C., Chemale, F., Kawashita, K., et al., 2016. Isotope Studies of Carbonate Rocks of La Luna Formation (Venezuela) to Constrain the Oceanic Anoxic Event 3 (OAE3). Journal of South American Earth Sciences, 72: 38–48. https://doi.org/10.1016/j.jsames.2016.07.001

    Article  Google Scholar 

  • Madhavaraju, J., Lee, Y. I., Scott, R. W., et al., 2018. High-Resolution Carbonate Isotopic Study of the Mural Formation (Cerro Pimas Section), Sonora, México: Implications for Early Albian Oceanic Anoxic Events. Journal of South American Earth Sciences, 82: 329–345. https://doi.org/10.1016/j.jsames.2017.10.019

    Article  Google Scholar 

  • Maurer, F., van Buchem, F. S. P., Eberli, G. P., et al., 2013. Late Aptian Long-Lived Glacio-Eustatic Lowstand Recorded on the Arabian Plate. Terra Nova, 25(2): 87–94. https://doi.org/10.1111/ter.12009

    Article  Google Scholar 

  • Motamedalshariati, M., Raisossadat, S. N., Moluodi, D., et al., 2016. Foraminifera Biozonation and Morphogroups from Nimbolook Section, East Margin of Lut Block, Iran. Arabian Journal of Geosciences, 9(19): 720. https://doi.org/10.1007/s12517-016-2709-y

    Article  Google Scholar 

  • Mutterlose, J. B., 2009. The Aptian Albian Cold Snap: Evidence for “Mid” Cretaceous Icehouse Interludes. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 252(2): 217–225. https://doi.org/10.1127/0077-7749/2009/0252-0217

    Article  Google Scholar 

  • Mutterlose, J., Bornemann, A., Luppold, F. W., et al., 2003. The Vöhrum Section (Northwest Germany) and the Aptian/Albian Boundary. Cretaceous Research, 24(3): 203–252. https://doi.org/10.1016/s0195-6671(03)00043-0

    Article  Google Scholar 

  • Petrizzo, M. R., Huber, B. T., Gale, A. S., et al., 2012. Abrupt Planktic Foraminiferal Turnover across the Niveau Kilian at Col de Pré-Guittard (Vocontian Basin, Southeast France): New Criteria for Defining the Aptian/Albian Boundary. Newsletters on Stratigraphy, 45(1): 55–74

    Article  Google Scholar 

  • Raisossadat, S. N., Asadi, S., Zarei, H., et al., 2014. Stratigraphy Paleoecology and Paleobiogeography of Cretaceous Deposits in the East of Lut Block (Qayen area). Proceeding of 18th Symposium of Geological Society of Iran. Dec. 24–25, Tarbiat Modarres University, Iran. 600–610

    Google Scholar 

  • Raisossadat, S. N., Guzhov, A., Arzhaneh, R. N. D., et al., 2022. Gastropoda from Lower Cretaceous Deposits of Nimbolook Area, Eastern Iran. Stratigraphy and Geological Correlation, 30(1): 65–74. https://doi.org/10.1134/s0869593822010063

    Article  Google Scholar 

  • Raisossadat, S. N., Mosavinia, A., Khazaei, A. R., et al., 2011. Stratigraphy of Cretaceous Deposits in Southwest of Qayen Area (East of Iran). Proceeding of the 5th Symposium of Iranian Paleontological Society, International Center for Science, High Technology and Environmental Sciences. Mahan, Kerman, Iran (in Persian with English Abstract)

    Google Scholar 

  • Raisossadat, S. N., Mosavinia, A., Khazaei, A., et al., 2021. Biostratigraphy of Cretaceous Deposits Based on Ammonites in Southwest of Qayen Area (Qumenjan Section). Journal of Stratigraphy and Sedimentology Researches, 37: 127–146

    Google Scholar 

  • Raisossadat, S. N., Noori, H., 2016. Lower Cretaceous Gastropods from the Qayen Area, Eastern Iran. Geobios, 49(4): 293–301. https://doi.org/10.1016/j.geobios.2016.06.001

    Article  Google Scholar 

  • Raisossadat, S. N., Skelton, P. W., 2005. First Record of Rudist Fauna from the Qayen Area, Eastern Iran. 7th International Cretaceous Symposium. Neuchatel, Switzerland. 177–178

  • Sabatino, N., Coccioni, R., Salvagio Manta, D., et al., 2015. High-Resolution Chemostratigraphy of the Late Aptian-Early Albian Oceanic Anoxic Event (OAE 1b) from the Poggio Le Guaine Section (Umbria-Marche Basin, Central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 319–333. https://doi.org/10.1016/j.palaeo.2015.03.009

    Article  Google Scholar 

  • Sharifi, J., Raisossadat, S. N., Mortazavi Mehrizi, M., et al., 2016. Albian and Cenomanian Ammonites of the Eastern Margin of the Lut Block (East Iran). Carnets de Géologie (Notebooks on Geology), 16(25): 591–613. https://doi.org/10.4267/2042/61850

    Article  Google Scholar 

  • Stoll, H. M., Schrag, D. P., 2000. High-Resolution Stable Isotope Records from the Upper Cretaceous Rocks of Italy and Spain: Glacial Episodes in a Greenhouse Planet? Geological Society of America Bulletin, 112(2): 308–319. https://doi.org/10.1130/0016-7606(2000)112308:hsirft>2.0.co;2

    Article  Google Scholar 

  • Tirrul, R., Bell, I. R., Griffis, R. J., et al., 1983. The Sistan Suture Zone of Eastern Iran. Geological Society of America Bulletin, 94(1): 134–150. https://doi.org/10.1130/0016-7606(1983)94134:tsszoe>2.0.co;2

    Article  Google Scholar 

  • Vahrenkamp, V. C., 2013. Carbon-Isotope Signatures of Albian to Cenomanian (Cretaceous) Shelf Carbonates of the Natih Formation, Sultanate of Oman. Geo Arabia, 8: 65–82

    Google Scholar 

  • Voigt, S., Wiese, F., 2000. Evidence for Late Cretaceous (Late Turonian) Climate Cooling from Oxygen-Isotope Variations and Palaeobiogeographic Changes in Western and Central Europe. Journal of the Geological Society, 157(4): 737–743. https://doi.org/10.1144/jgs.157.4.737

    Article  Google Scholar 

  • Voigt, S., Wilmsen, M., Mortimore, R. N., et al., 2003. Cenomanian Palaeotemperatures Derived from the Oxygen Isotopic Composition of Brachiopods and Belemnites: Evaluation of Cretaceous Palaeotemperature Proxies. International Journal of Earth Sciences, 92(2): 285–299. https://doi.org/10.1007/s00531-003-0315-1

    Article  Google Scholar 

  • Weissert, H., Lini, A., 1991. Ice Age Interludes during the Time of Cretaceous Greenhouse Climate?. In: Müller, D. W., McKenzie, J. A., Weissert, H., eds., Controversies in Modern Geology. Wiley. 173–191

  • Wohlwend, S., Hart, M., Weissert, H., 2016. Chemostratigraphy of the Upper Albian to Mid-Turonian Natih Formation (Oman) —How Authigenic Carbonate Changes a Global Pattern. The Depositional Record, 2(1): 97–117. https://doi.org/10.1002/dep2.15

    Article  Google Scholar 

  • Zarei, H., Raisossadat, S. N., Mortazavi Mehrizi, M., et al., 2019. Microfacies and Sedimentary Environment of Lower Cretaceous Deposits in Qumenjan Section, South West Qayen. Quarterly Journal of Iranian Geology, 13(5): 99–120

    Google Scholar 

Download references

Acknowledgments

Helpful comments and suggestions from two anonymous reviewers and the editors are highly appreciated. The authors would also like to thank the Institute of Oceanography, National Taiwan University, Taipei for geochemical analyses. Logistical supports for field works and laboratory facilities were partly financed by the University of Birjand, Iran. Thanks go to Iranian friends for their kind cooperation in the field. We thank Prof. Gregory Price (University of Plymouth) for his comments during completing this article. The final publication is available at Springer via https://doi.org/10.1007/s12583-023-1911-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Naser Raisossadat.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, J., Raisossadat, S.N., Mehrizi, M.M. et al. Carbon Isotope Stratigraphy of the Uppermost Aptian–Lower Cenomanian Strata from the Lut Block, East Iran. J. Earth Sci. 34, 1793–1799 (2023). https://doi.org/10.1007/s12583-023-1911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-023-1911-4

Key Words

Navigation