Skip to main content
Log in

A Novel Gymnosperm Wood from the Lopingian (Late Permian) in Zhangzi, Shanxi, North China and Its Paleoecological and Paleogeographic Implications

  • Hydrogeology and Environmental Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Permian-Triassic transition saw extreme climatic changes that severely impacted the terrestrial ecosystem. Fossil plants, particularly fossil woods, are sensitive to climatic changes, and they, therefore, are unique materials revealing extreme environmental and climatic changes on land at that time. Abundant conifer woods were discovered in the Lopingian (Late Permian) strata of the Sunjiagou Formation in Shanxi Province, North China. The newly finding permineralized woods record the unique landscape of Lopingian North China. They represent a new conifer genus and species: Shanxiopitys zhangziensis gen. et sp. nov. Analyses of growth pattern and anatomical characteristics of the fossil woods indicate these trees grew under optimal growing conditions, and without seasonal growth cessation. However, climate signals from leaf fossils, vertebrate fossils and sedimentary evidences indicate a strongly seasonal climate in North China during the Lopingian. Thus, it is speculated that these trees likely lived in the gallery forests, which were distributed along the paleo-rivers within a seasonal landscape in the central North China block during the Lopingian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Brea, M., Artabe, A., Spalletti, L. A., 2008. Ecological Reconstruction of a Mixed Middle Triassic Forest from Argentina. Alcheringa, 32(4): 365–393. https://doi.org/10.1080/03115510802417760

    Article  Google Scholar 

  • Brea, M., Matheos, S. D., Raigemborn, M. S., et al., 2011. Paleoecology and Paleoenvironments of Podocarp Trees in the Ameghino Petrified Forest (Golfo San Jorge Basin, Patagonia, Argentina): Constraints for Early Paleogene Paleoclimate. Geologica Acta, 9(1): 13–28. https://doi.org/10.1344/105.000001647

    Google Scholar 

  • Domeier, M., Torsvik, T. H., 2014. Plate Tectonics in the Late Paleozoic. Geoscience Frontiers, 5(3): 303–350. https://doi.org/10.1016/j.gsf.2014.01.002

    Article  Google Scholar 

  • Dubiel, R. F., Smoot, J. P., 1994. Criteria for Interpreting Paleoclimate from Red Beds: A Tool for Pangean Reconstructions. In: Embry, A. F., Beauchamp, B., Glass, B. J., eds., Pangea: Global Environments and Resources, Canadian Society of Petroleum Geologists, Memoir. Canadian Society of Petroleum Geologists, Calgary, 17: 295–310

    Google Scholar 

  • Falcon-Lang, H. J., 2000a. A Method to Distinguish between Woods Produced by Evergreen and Deciduous Coniferopsids on the Basis of Growth Ring Anatomy: A New Palaeoecological Tool. Palaeontology, 43(4): 785–793. https://doi.org/10.1111/1475-4983.00149

    Article  Google Scholar 

  • Falcon-Lang, H. J., 2000b. The Relationship between Leaf Longevity and Growth Ring Markedness in Modern Conifer Woods and Its Implications for Palaeoclimatic Studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3/4): 317–328. https://doi.org/10.1016/S0031-0182(00)00079-1

    Article  ADS  Google Scholar 

  • Falcon-Lang, H. J., 2003. Growth Interruptions in Silicified Conifer Woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: Implications for Palaeoclimate and Dinosaur Palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 199(3/4): 299–314. https://doi.org/10.1016/s0031-0182(03)00539-x

    Article  ADS  Google Scholar 

  • Feng, Z., Wang, J., Röϟler, R., 2010. Palaeoginkgoxylon Zhoui, a New Ginkgophyte Wood from the Guadalupian (Permian) of China and Its Evolutionary Implications. Review of Palaeobotany and Palynology, 162(2): 146–158. https://doi.org/10.1016/j.revpalbo.2010.06.010

    Article  Google Scholar 

  • Feng, Z., 2012. Ningxiaites Specialis, a New Woody Gymnosperm from the Uppermost Permian of China. Review of Palaeobotany and Palynology, 181: 34–46. https://doi.org/10.1016/j.revpalbo.2012.05.005

    Article  Google Scholar 

  • Feng, Z., Wang, J., Liu, L. J., et al., 2012. A Novel Coniferous Tree Trunk with Septate Pith from the Guadalupian (Permian) of China: Ecological and Evolutionary Significance. International Journal of Plant Sciences, 173(7): 835–848. https://doi.org/10.1086/666660

    Article  Google Scholar 

  • He, J., Wang, S. J., Hilton, J., et al., 2013. Xuanweioxylon Scalariforme Gen. et Sp. Nov.: Novel Permian Coniferophyte Stems with Scalariform Bordered Pitting on Secondary Xylem Tracheids. Review of Palaeobotany and Palynology, 197: 152–165. https://doi.org/10.1016/j.revpalbo.2013.05.010

    Article  Google Scholar 

  • He, X. Z., Wang, S. J., Wan, M. L., et al., 2016. Gigantopteris Schenk Ex Yabe in the Capitanian-Wuchiapingian (Middle–Late Permian) Flora of Central Shanxi in North China: Palaeobiogeographical and Palaeoecological Implications. Journal of Asian Earth Sciences, 116: 115–121. https://doi.org/10.1016/j.jseaes.2015.11.009

    Article  ADS  Google Scholar 

  • Haberlandt, G., 1914. Physiological Plant Anatomy. Macmillan and Co., London

    Google Scholar 

  • Hu, S. R., Gao, W. T., Liu, H., 1990. The Discovery of the Plane of Unconfirmity under the Bottom Surface of Pingdingshan Sandstone and the Preliminary Discussion about the Boundary of the Permian-Triassic System, Henan Province. Coal Geology & Exploration, 18(4): 12–15, 71 (in Chinese with English Abstract)

    Google Scholar 

  • Li, X. X., 1997. The Origin, Evolution and Distribution of the Cathaysian Flora in East Asia. Acta Palaeontologica Sinica, 36: 411–422. (in Chinese with English Abstract)

    Google Scholar 

  • Liu, J., Li, L., 2013. Large Tetrapod Burrows from the Permian Naobaogou Formation of the Daqingshan Area, Nei Mongol, China. Acta Geologica Sinica: English Edition, 87(6): 1501–1507. https://doi.org/10.1111/1755-6724.12154

    Article  Google Scholar 

  • Looy, C. V., Ranks, S. L., Chaney, D. S., et al., 2016. Biological and Physical Evidence for Extreme Seasonality in Central Permian Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 451: 210–226. https://doi.org/10.1016/j.palaeo.2016.02.016

    Article  ADS  Google Scholar 

  • Metcalfe, C. R., Chalk, L., 1950. Anatomy of the Dicotyledons. Clarendon Press, Oxford

    Google Scholar 

  • Mikesell, J. E., Schroeder, A. C., 1980. Development of Chambered Pith in Stems of Phytolacca Americana L. (Phytolaccaceae). American Journal of Botany, 67(1): 111–118. https://doi.org/10.1002/j.1537-2197.1980.tb07629.x

    Article  Google Scholar 

  • Montanez, I. P., Tabor, N. J., Niemeier, D., et al., 2007. CO2-Forced Climate and Vegetation Instability during Late Paleozoic Deglaciation. Science, 315(5808): 87–91. https://doi.org/10.1126/science.1134207

    Article  ADS  CAS  PubMed  Google Scholar 

  • Norin, E., 1924. The Lithological Character of the Permian Sediments of the Angara Series in Central Shansi, N. China. Geologiska Föreningen i Stockholm Förhandlingar, 46(1/2): 19–55. https://doi.org/10.1080/11035892409444877

    Article  Google Scholar 

  • Norin, E., 1922. The Late Palaeozoic and Early Mesozoic Sediments of Central Shansi. Bulletin of the Geological Survey of China, 4: 1–79

    Google Scholar 

  • Ouyang, S., Hou, J. P., 1999. On Characteristics of the Cathaysian Palynoflora. Acta Palaeontologica Sinica, 38(3): 261–281 (in Chinese with English Abstract)

    Google Scholar 

  • Parrish, J. T., 1995. Geologic Evidence of Permian Climate. In: Scholle, P. A., Tadeusz, M. P., Ulmer-Scholle, D. S., eds., The Permian of Northern Pangea. Springer Verlag, London. 53–61

    Chapter  Google Scholar 

  • Parrish, J. T., 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. Columbia University Press, New York

    Google Scholar 

  • Pant, D. D., Singh, V. K., 1987. Xylotomy of Some Woods from Raniganj Formation (Permian), Raniganj Coalfield, India. Palaeontographica B, 203: 5–82

    Google Scholar 

  • Philippe, M., Bamford, M. K., 2008. A Key to Morphogenera Used for Mesozoic Conifer-Like Woods. Review of Palaeobotany and Palynology, 148(2/3/4): 184–207. https://doi.org/10.1016/j.revpalbo.2007.09.004

    Article  Google Scholar 

  • Philippe, M., 1995. Bois Fossiles du Jurassique de Franche-Comté (Nordest de la France): Systématique et Biogéographie. Palaeontogr., Abt. B, 236: 45–103

    Google Scholar 

  • Schweingruber, F. H., 1992. Annual Growth Rings and Growth Zones in Woody Plants in Southern Australia. IAWA Journal, 13(4): 359–379. https://doi.org/10.1163/22941932-90001290

    Article  Google Scholar 

  • Schweingruber, F. H., 1996. Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forest, Berne. 1–609

  • Sheldon, N. D., 2005. Do Red Beds Indicate Paleoclimatic Conditions?: A Permian Case Study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3/4): 305–319. https://doi.org/10.1016/j.palaeo.2005.06.009

    Article  ADS  Google Scholar 

  • Shi, G. R., Waterhouse, J. B., 2010. Late Palaeozoic Global Changes Affecting High-Latitude Environments and Biotas: An Introduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(1/2): 1–16. https://doi.org/10.1016/j.palaeo.2010.07.021

    Article  ADS  Google Scholar 

  • Shi, X. A., Yu, J. X., Li, H., et al., 2014. Xinjiangoxylon Gen. Nov., a New Gymnosperm from the Latest Permian of China. Acta Geologica Sinica: English Edition, 88(5): 1356–1363. https://doi.org/10.1111/1755-6724.12303

    Article  Google Scholar 

  • Shi, X., Yu, J. X., Broutin, J., et al., 2015. Junggaropitys, a New Gymnosperm Stem from the Middle-Late Triassic of Junggar Basin, Northwest China, and Its Palaeoecological and Palaeoclimatic Implications. Review of Palaeobotany and Palynology, 223: 10–20. https://doi.org/10.1016/j.revpalbo.2015.07.013

    Article  Google Scholar 

  • Shi, X., Yu, J. X., Broutin, J., et al., 2017. Turpanopitys Taoshuyuanense Gen. et Sp. Nov., a Novel Woody Branch Discovered in Early Triassic Deposits of the Turpan Basin, Northwest China, and Its Palaeoecological and Palaeoclimate Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 468: 314–326. https://doi.org/10.1016/j.palaeo.2016.12.026

    Article  ADS  Google Scholar 

  • Shi, X. A., Lang, J. B., Li, N., et al., 2021. Fossil Woods from the Olenekian (Late Early Triassic) Shaofanggou Formation in the Junggar Basin, Northern Xinjiang, North-West China. Geological Journal, 56(12): 6223–6230. https://doi.org/10.1002/gj.4193

    Article  ADS  Google Scholar 

  • Speer, J. H., 2010. Fundamentals of Tree Ring Research. The University of Arizona Press, Tucson. 1–360

    Google Scholar 

  • Šternberg, K., Auinger, E. A., Both, F., et al., 1820. Versuch einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt. In Kommission im Deutschen Museum, Leipzig Und. https://doi.org/10.5962/bhl.title.154066 (in German)

  • Stevens, L. G., Hilton, J., Bond, D. P. G., et al., 2011. Radiation and Extinction Patterns in Permian Floras from North China as Indicators for Environmental and Climate Change. Journal of the Geological Society, 168(2): 607–619. https://doi.org/10.1144/0016-76492010-042

    Article  ADS  Google Scholar 

  • Solereder, H., 1908. Systematic Anatomy of the Dicotyledons. Clarendon Press, Oxford

    Google Scholar 

  • Tarelkin, Y., Delvaux, C., De Ridder, M., et al., 2016. Growth-Ring Distinctness and Boundary Anatomy Variability in Tropical Trees. IAWA Journal, 37(2): 275–294. https://doi.org/10.1163/22941932-20160134

    Article  Google Scholar 

  • van der Voo, R., 1988. Paleozoic Paleogeography of North America, Gondwana, and Intervening Displaced Terranes: Comparisons of Paleomagnetism with Paleoclimatology and Biogeographical Patterns. Geological Society of America Bulletin, 100(3): 311–324. https://doi.org/10.1130/0016-7606(1988)100<0311:pponag>2.3.co;2

    Article  ADS  Google Scholar 

  • Veneklaas, E. J., Fajardo, A., Obregon, S., et al., 2005. Gallery Forest Types and Their Environmental Correlates in a Colombian Savanna Landscape. Ecography, 28(2): 236–252. https://doi.org/10.1111/j.0906-7590.2005.03934.x

    Article  ADS  Google Scholar 

  • Walker, T. R., 1976. Diagenetic Origin of Continental Red Beds. In: Falke, H., ed., The Continental Permain in Central, West, and South Europe. Springer, Dordrecht. 240–282. https://doi.org/10.1007/978-94-010-1461-8_20

    Chapter  Google Scholar 

  • Wang, J., 2010. Late Paleozoic Macrofloral Assemblages from Weibei Coalfield, with Reference to Vegetational Change through the Late Paleozoic Ice-Age in the North China Block. International Journal of Coal Geology, 83(2/3): 292–317. https://doi.org/10.1016/j.coal.2009.10.007

    Article  CAS  Google Scholar 

  • Wang, Y., Yang, J. H., Yuan, D. X., et al., 2022. Conodont Biostratigraphic Constraint on the Lower Taiyuan Formation in Southern North China and Its Paleogeographic Implications. Journal of Earth Science, 33(6): 1480–1493. https://doi.org/10.1007/s12583-021-1526-8

    Article  Google Scholar 

  • Wang, Z. Q., Wang, L. X., 1986. Late Permian Fossil Plants from the Lower Part of the Shiqianfeng (Shihchienfeng) Group in North China. Bulletin of the Tianjin Institute Geology and Mineral Resources, Chinese Academy Geological Sciences, 15: 1–80 (in Chinese with English Abstract)

    CAS  Google Scholar 

  • Wang, Z. Q., 1993. Evolutionary Ecosystem of Permian and Triassic Redbeds in North China: A Historical Record of Natural Global Desertification. New Mexico Mus. Nat. Hist. Sci. Bull., 3: 471–476

    Google Scholar 

  • Wang, Z. Q., Chen, A. S., 2001. Traces of Arborescent Lycopsids and Dieback of the Forest Vegetation in Relation to the Terminal Permian Mass Extinction in North China. Review of Palaeobotany and Palynology, 117(4): 217–243. https://doi.org/10.1016/S0034-6667(01)00094-X

    Article  Google Scholar 

  • Wei, H. B., Gou, X. D., Yang, J. Y., et al., 2019. Fungi-Plant-Arthropods Interactions in a New Conifer Wood from the Uppermost Permian of China Reveal Complex Ecological Relationships and Trophic Networks. Review of Palaeobotany and Palynology, 271: 104100. https://doi.org/10.1016/j.revpalbo.2019.07.005

    Article  Google Scholar 

  • Worbes, M., 1999. Annual Growth Rings, Rainfall-Dependent Growth and Long-Term Growth Patterns of Tropical Trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology, 87(3): 391–403. https://doi.org/10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  • Wu, Q., Ramezani, J., Zhang, H. A., et al., 2021. High-Precision U-Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677–681. https://doi.org/10.1130/g48051.1

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (Nos. 92055201 and 31700183). Professor Jean Broutin and Prof. Denise Pons are thanked for their assistance of identification and fieldwork. We are thankful to Guozhen Xu, Yuyang Tian and Xujie Wang for their help in field work. We also thank Prof. Zhongqiang Chen for his constructive comment on the article. We also thank two anonymous reviewers for helpful feedback and constructive comment on the article. The final publication is available at Springer via https://doi.org/10.1007/s12583-021-1510-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Shi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Yu, J., Sun, Y. et al. A Novel Gymnosperm Wood from the Lopingian (Late Permian) in Zhangzi, Shanxi, North China and Its Paleoecological and Paleogeographic Implications. J. Earth Sci. 35, 167–176 (2024). https://doi.org/10.1007/s12583-021-1510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-021-1510-3

Key Words

Navigation