Skip to main content
Log in

First Discovery of Late Triassic Tuffs in the South Qilian Basin: Geochemical Characteristics, Zircon LA-ICP-MS U-Pb Ages and Potential Source Regions

  • Petrology, Geochemistry, and Geodynamics
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

This investigation reports the first discovery of more than 70 tuff intervals in the Upper Triassic, South Qilian Basin. Petrographic and geochemical analyses were carried out on ten tuff samples and zircon U-Pb dating were on three. Thin section and X-ray diffraction (XRD) results indicate that the tuffs were composed of crystal shards and altered glass shards; crystal shards include plagio-clase and quartz. Most of the tuffs had been transformed into illite/smectite mixed-layers (I/S). In addition, calcite, pyrite, dolomite and siderite were also identified in some of the tuff samples. Analysis of major elements suggests that the tuffs are peraluminous high-K calcalkaline series. Trace elements indicate that the tuffs are enriched in high field strength elements (HFSE), including Th, U, Ta, Zr and Hf. Geochemical characteristics suggest that the tuffs originated from comendite pantellerite and rhyolite from within plate setting. Zircon U-Pb dating (236.0 ± 1.7, 231.4 ± 1.6, and 223.1 ± 3.9 Ma) indicate that the tuffs were erupted in the Late Triassic. Comparative chronology and geochemical analyses suggest that the West Qinling belt and the East Kunlun belt are the potential source regions of these tuffs, and they originated from the within plate magma during a post-collisional period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Astini, R. A., Collo, G., Martina, F., 2007. Ordovician K-Bentonites in the Upper-Plate Active Margin of Western Gondwana, (Famatina Ranges): Stratigraphic and Palaeogeographic Significance. Gondwana Research, 11(3): 311–325. https://doi.org/10.1016/j-gr.2006.05.005

    Article  Google Scholar 

  • Chen, S. C., Wang, Y. T., Yu, J. J., et al., 2020. Petrogenesis of Triassic Granitoids in the Fengxian-Taibai Ore Cluster, Western Qinling Orogen, Central China: Implications for Tectonic Evolution and Polymetallic Mineralization. Ore Geology Reviews, 123: 103577. https://doi.org/10.1016/j.oregeorev.2020.103577

    Article  Google Scholar 

  • Dawson, W. C., 2000. Shale Microfacies: Eagle Ford Group (Cenomanian-Turonian) North-Central Texas Outcrops and Subsurface Equivalents. AAPG Bulletin, 84(10): 607–621. https://doi.org/10.1306/8626c005-173b-11d7-8645000102c1865d

    Google Scholar 

  • Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27(12): 3603–3614. https://doi.org/10.1080/00288306.2011.590212 (in Chinese with English Abstract)

    Google Scholar 

  • Dang, B., Zhao, H., Lin, G. C., et al., 2013. Petrogenesis and Tectonic Significance of Carboniferous Volcanic Rocks in Northern Alxa and Its Neighboring Areas, Inner Mongolia, China. Earth Science, 38(5): 963–974. https://doi.org/10.3799/dqkx.2013.094 (in Chinese with English Abstract)

    Google Scholar 

  • Dong, Y. P., Yang, Z., Liu, X. M., et al., 2016. Mesozoic Intracontinental Orogeny in the Qinling Mountains, Central China. Gondwana Research, 30: 144–158. https://doi.org/10.1016/j.gr.2015.05.004

    Article  Google Scholar 

  • Ellis, B. S., Schmitz, M. D., Hill, M., 2019. Reconstructing a Snake River Plain ‘Super-Eruption’ via Compositional Fingerprinting and High-Precision U/Pb Zircon Geochronology. Contributions to Mineralogy and Petrology, 174(12): 1–16. https://doi.org/10.1007/s00410-019-1641-z

    Article  Google Scholar 

  • Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194–1216. https://doi.org/10.3799/dqkx.2021.116 (in Chinese with English Abstract)

    Google Scholar 

  • Fu, J. H., Zhou, L. F., 1998. Carboniferous-Jurassic Stratigraphic Provinces of the Southern Qilian Basin and Their Petro-Geological Features. Northwest Geoscience, 19: 47–54 (in Chinese with English Abstract)

    Google Scholar 

  • Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135–144. https://doi.org/10.1016/j.gr.2009.04.010

    Article  Google Scholar 

  • Gaibor, J., Hochuli, J. P. A., Winkler, W., et al., 2008. Hydrocarbon Source Potential of the Santiago Formation, Oriente Basin, SE of Ecuador. Journal of South American Earth Sciences, 25(2): 145–156. https://doi.org/10.1016/j.jsames.2007.07.002

    Article  Google Scholar 

  • Guo, A. L., Zhang, G. W., Qiang, J., et al., 2009. Indosinian Zongwulong Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1): 1–12 (in Chinese with English Abstract)

    Google Scholar 

  • Grevenitz, P., Carr, P., Hutton, A., 2003. Origin, Alteration and Geochemical Correlation of Late Permian Airfall Tuffs in Coal Measures, Sydney Basin, Australia. International Journal of Coal Geology, 55(1): 27–46. https://doi.org/10.1016/s0166-5162(03)00064-8

    Article  Google Scholar 

  • Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205–222. https://doi.org/10.1016/j.lithos.2015.05.004

    Article  Google Scholar 

  • Huang, X. F., Mo, X. X., Yu, X. H., et al., 2013. Zircon U-Pb Chronology, Geochemistry of the Late Triassic Acid Volcanic Rocks in Tanchang Area, West Qinling and Their Geological Significance. Acta Petrologica Sinica, 29(11): 3968–3980 (in Chinese with English Abstract)

    Google Scholar 

  • Huff, W. D., Bergström, S. M., Kolata, D. R., 1992. Gigantic Ordovician Volcanic Ash Fall in North America and Europe: Biological, Tectonomagmatic, and Event-Stratigraphic Significance. Geology, 20(10): 875–878. https://doi.org/10.1130/0091-7613(1992)0200875:govafi>2.3.co;2

    Article  Google Scholar 

  • Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055

    Article  Google Scholar 

  • Jin, C. S., Liu, Q. S., Liang, W. T., et al., 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and Its Tectonic Implications for India-Eurasia Collision and Tibetan Plateau Deformation. Earth and Planetary Science Letters, 486: 41–53. https://doi.org/10.1016/j.epsl.2018.01.010

    Article  Google Scholar 

  • Kong, J. J., Niu, Y. L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implications for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364/365: 105513. https://doi.org/10.1016/j.lithos.2020.105513

    Article  Google Scholar 

  • Koschek, G., 1993. Origin and Significance of the SEM Cathodo-luminescence from Zircon. Journal of Microscopy, 171(3): 223–232. https://doi.org/10.1111/j.1365-2818.1993.tb03379.x

    Article  Google Scholar 

  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Li, Z. C., Zhang, X. K., Zeng, J. J., et al., 2019. The Characteristics and Geological Significance of the Adakite Rocks of the Upper Triassic Stata Huari Formation Volcanics in West Qinling. Mineral Exploration, 10(6): 1361–1368 (in Chinese with English Abstract)

    Google Scholar 

  • Lin, I.I., Hu, C. M., Li, Y. H., et al., 2011. Fertilization Potential of Volcanic Dust in the Low-Nutrient Low-Chlorophyll Western North Pacific Subtropical Gyre: Satellite Evidence and Laboratory Study. Global Biogeochemical Cycles, 25(1): GB1006. https://doi.org/10.1029/2009gb003758

    Article  Google Scholar 

  • Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  • Liu, B., Ma, C. Q., Huang, J., et al., 2016. Petrogenetic Mechanism and Tectonic Significance of Triassic Yushu Volcanic Rocks in the Northern Part of the North Qiangtang Terrane. Acta Petrologica et Mineralogica, 35: 1–15 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y., Tan, J., Wei, J. H., et al., 2019. Sources and Petrogenesis of Late Triassic Zhiduo Volcanics in the Northeast Tibet: Implications for Tectonic Evolution of the Western Jinsha Paleo-Tethys Ocean. Lithos, 336/337: 169–182. https://doi.org/10.1016/j.lithos.2019.04.005

    Article  Google Scholar 

  • MacDonald, R., Bagiński, B., Belkin, H. E., et al., 2019. The Gold Flat Tuff, Nevada: Insights into the Evolution of Peralkaline Silicic Magmas. Lithos, 328/329: 1–13. https://doi.org/10.1016/j.lithos.2019.01.017

    Article  Google Scholar 

  • Mahar, M. A., Goodell, P. C., Ramirez, A., et al., 2019. Timing and Origin of Silicic Volcanism in Northwestern Mexico: Insights from Zircon U-Pb Geochronology, Hf Isotopes and Geochemistry of Rhyolite Ignimbrites from Palmarejo and Guazapares in Southwest Chihuahua. Lithos, 324/325: 246–264. https://doi.org/10.1016/j.lithos.2018.11.010

    Article  Google Scholar 

  • Mai, Y. J., Zhu, L. D., Yang, W. G., et al., 2021. Zircon U-Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet. Earth Science, 46(11): 3880–3891. https://doi.org/10.3799/dqkx.2020.397 (in Chinese with English Abstract)

    Google Scholar 

  • Mao, G. Z., Liu, C. Y., Liu, B. Q., et al., 2012. Effects of Uranium (Type II) on Evolution of Hydrocarbon Generation of Source Rocks. Acta Geologica Sinica, 86(11): 1833–1840 (in Chinese with English Abstract)

    Google Scholar 

  • Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556–567. https://doi.org/10.3799/dqkx.2021.037 (in Chinese with English Abstract)

    Google Scholar 

  • Min, K., Renne, P. R., Huff, W. D., 2001. 40Ar/39Ar Dating of Ordovician K-Bentonites in Laurentia and Baltoscandia. Earth and Planetary Science Letters, 185(1/2): 121–134. https://doi.org/10.1016/s0012-821x(00)00365-4

    Article  Google Scholar 

  • Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1–28 (in Chinese with English Abstract)

    Google Scholar 

  • Parrish, C. B., 2013. Insights into the Appalachian Basin Middle Devonian Depositional System from U-Pb Zircon Geochronology of Volcanic Ashes in the Marcellus Shale and Onondaga Limestone: [Dissertation]. West Virginia University, Morgantown. https://doi.org/10.33915/etd.3616

    Book  Google Scholar 

  • Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesits. Wiley, Chichester. 525–548

    Google Scholar 

  • Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Peng, H., Wang, J. Q., Liu, C. Y., et al., 2019. Thermochronological Constraints on the Meso-Cenozoic Tectonic Evolution of the Haiyuan-Liupanshan Region, Northeastern Tibetan Plateau. Journal of Asian Earth Sciences, 183: 103966. https://doi.org/10.1016/j.jseaes.2019.103966

    Article  Google Scholar 

  • Peng, H., Wang, J. Q., Liu, C. Y., et al., 2023. Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia. Journal of Earth Science, 34(1): 37–53. https://doi.org/10.1007/s12583-020-1053-z

    Article  Google Scholar 

  • Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. https://doi.org/10.1007/bf00381441

    Article  Google Scholar 

  • Qiu, X. W., Liu, C. Y., Mao, G. Z., et al., 2014. Late Triassic Tuff Intervals in the Ordos Basin, Central China: Their Depositional, Petrographic, Geochemical Characteristics and Regional Implications. Journal of Asian Earth Sciences, 80: 148–160. https://doi.org/10.1016/j.jseaes.2013.11.004

    Article  Google Scholar 

  • Spears, D. A., Rice, C. M., 1973. An Upper Carboniferous Tonstein of Volcanic Origin. Sedimentology, 20(2): 281–294. https://doi.org/10.1111/j.1365-3091.1973.tb02050.x

    Article  Google Scholar 

  • Su, W. B., He, L. Q., Wang, Y. B., et al., 2003. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China Series D: Earth Sciences, 46(11): 1121–1133. https://doi.org/10.1360/01yd0225

    Article  Google Scholar 

  • Sun, C. R., 1997. Lithostratigraphy in Qinhai Province. China University of Geosciences Press, Wuhan. 339 (in Chinese)

    Google Scholar 

  • Tan, F. R., Liu, S. M., Cui, W. X., et al., 2017. Origin of Gas Hydrate in the Juhugeng Mining Area of Muli Coalfield. Acta Geologica Sinica, 91(5): 1158–1167 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175/176: 285–301. https://doi.org/10.1016/j.lithos.2013.05.013

    Article  Google Scholar 

  • Wang, J., Wang, Z. J., Chen, W. X., et al., 2007. New Evidences for the Age Assignment of the Nadi Kangri Formation in the North Qiangtang Basin, Northern Tibet, China. Geological Bulletin of China, 26(4): 404–409 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473–490. https://doi.org/10.1007/s00410-007-0253-1

    Article  Google Scholar 

  • Wang, W. Q., Liu, C. Y., Liu, W. H., et al., 2018. Factors Influencing Hydrogen Yield in Water Radiolysis and Implications for Hydrocarbon Generation: A Review. Arabian Journal of Geoscience, 11(18): 542. https://doi.org/10.1007/s12517-018-3903-x

    Article  Google Scholar 

  • Wang, W., Xiong, F. H., Ma, C. Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887–2902. https://doi.org/10.3799/dqkx.2020.270 (in Chinese with English Abstract)

    Google Scholar 

  • Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

  • Xie, Q. F., Zhou, L. F., Ma, G. F., et al., 2011. Organic Geochemistry of Triassic Source Rocks in the Southern Qilian Basin. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(6): 1034–1040 (in Chinese with English Abstract)

    Google Scholar 

  • Yao, H. F., Wang, J., Tan, X. F., et al., 2019. Sedimentary Characteristics of Permian-Triassic in Yangkang Area, South Qilian Basin. Petroleum Geology & Experiment, 41(5): 699–716 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, W. T., Wang, M., Zheng, D. S., et al., 2018. Late Triassic Sedimentary Record from the Nanzhao Basin and Implications for the Orogeny in the Qinling Orogenic Belt, Central China. Journal of Asian Earth Sciences, 166: 120–135. https://doi.org/10.1016/j.jseaes.2018.07.038

    Article  Google Scholar 

  • Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13–25. https://doi.org/10.1016/j.epsl.2019.04.020

    Article  Google Scholar 

  • Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture. Tectonics, 31(4): TC4004. https://doi.org/10.1029/2011tc003044

    Article  Google Scholar 

  • Yang, Z. Y., 1983. Triassic in South Qilian. Geological Publishing House, Beijing. 1–224 (in Chinese)

    Google Scholar 

  • Yin, Y. K., Gao, Y. F., Wang, P. J., et al., 2019. Discovery of Triassic Volcanic-Sedimentary Strata in the Basement of Songliao Basin. Science Bulletin, 64(10): 644–646. https://doi.org/10.1016/j.scib.2019.03.020

    Article  Google Scholar 

  • Yuan, H. L., Wu, F. Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421. https://doi.org/10.1360/03wd0139

    Article  Google Scholar 

  • Zhao, S. Q., Tan, J., Wei, J. H., et al., 2015. Late Triassic Batang Group Arc Volcanic Rocks in the Northeastern Margin of Qiangtang Terrane, Northern Tibet: Partial Melting of Juvenile Crust and Implications for Paleo-Tethys Ocean Subduction. International Journal of Earth Sciences, 104(2): 369–387. https://doi.org/10.1007/s00531-014-1080-z

    Article  Google Scholar 

  • Zhao, Y., Zheng, J. P., Xiong, Q., et al., 2018. Destruction of the North China Craton Triggered by the Triassic Yangtze Continental Subduction/Collision: A Review. Journal of Asian Earth Sciences, 164: 72–82. https://doi.org/10.1016/j.jseaes.2018.05.029

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41702144, 42002194), and the Natural Science Basic Research Plan of Shaanxi Province, China (Nos. 2019JQ-991, 2020JQ-746). The final publication is available at Springer via https://doi.org/10.1007/s12583-021-1446-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furong Tan.

Ethics declarations

The authors declare that they have no conflict of interest.

Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, F., Tan, F., Liu, S. et al. First Discovery of Late Triassic Tuffs in the South Qilian Basin: Geochemical Characteristics, Zircon LA-ICP-MS U-Pb Ages and Potential Source Regions. J. Earth Sci. 34, 1692–1703 (2023). https://doi.org/10.1007/s12583-021-1446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-021-1446-7

Key Words

Navigation