Skip to main content
Log in

Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China

  • Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

ABSTRACT: In this study, we present systematic petrological, geochemical, LA-ICP-MS zircon U-Pb ages and Nd isotopic data for the A-type granites and syenites from Suizhou-Zaoyang region. The results show that the peralkaline A-type granites and syenites were episodically emplaced in Suizhou-Zaoyang region between 450±3 and 441±7 Ma which corresponds to Late Ordovician and Early Silurian periods, respectively. Petrologically, the syenite-peralkaline granite association comprises of nepheline normative-syenite and alkaline granite in Guanzishan and quartz normative syenite and alkaline granite in Huangyangshan. The syenite-granite associations are ferroan to alkali in composition. They depict characteristics of typical OIB (oceanic island basalts) derived A-type granites in multi-elements primitive normalized diagram and Yb/Ta vs. Y/Nb as well as Ce/Nb vs. Y/Nb binary plots. Significant depletion in Ba, Sr, P, Ti and Eu indicates fractionation of feldspars, biotite, amphiboles and Ti-rich augite. The values of ɛNd(t) in Guanzishan nepheline syenite and alkaline granite are +1.81 and +2.26, respectively and the calculated two-stage model age for these rocks are 1 040 and 1 003 Ma, respectively. On the other hand, the Huangyangshan alkaline granite has ɛNd(t) values ranging from +2.61 to +3.46 and a relatively younger two-stage Nd model age values ranging from 906 to 975 Ma, respectively. Based on these data, we inferred that the Guanzishan nepheline syenites and granites were formed from fractional crystallization of OIB-like basic magmas derived from upwelling of metasomatized lithospheric mantle. The Huangyangshan quartz syenite and granite on the other hand, were formed from similar magmas through fractional crystallization with low input from the ancient crustal rocks. Typically, the rocks exhibit A1-type granite affinity and classified as within plate granites associated with the Ordovician crustal extension and the Silurian rifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Anderson, J. L., Smith, D. R., 1995. The Effects of Temperature and f O2 on the Al-in-Hornblende Barometer. American Mineralogist, 80(5/6): 549–559. https://doi.org/10.2138/am-1995-5.614

    Article  Google Scholar 

  • Barker, D. S., 1987. Tertiary Magmatism in Trans-Pecos Texas. In: Fitton, J. G., Upton, B. G. J., eds., Alkaline Igneous Rocks. Geological Society Special Publication, 30: 415–431

    Google Scholar 

  • Belousova, E. A., Griffin, W., OʼReilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364.7

    Article  Google Scholar 

  • Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007

    Article  Google Scholar 

  • Bowden, P., 1985. The Geochemistry and Mineralization of Alkaline Ring Complexes in Africa (a Review). Journal of African Earth Sciences, 3(1/2): 17–39. https://doi.org/10.1016/0899-5362(85)90020.x

    Article  Google Scholar 

  • Cao, L., Zhang, Q. X., Hu, S. J., et al., 2015. LAICP-MS Zircon U-Pb Age of Diabase Porphyry from the Donghe Area, Fangxian in South Daba Mountain and Its Tectonic Significance. Acta Geologica Sinica, 89(12): 2314–2322 (in Chinese with English Abstract)

    Google Scholar 

  • Cao, Q., Liu, J. J., Li, L. Y., et al., 2015. Zircon U-Pb Age of Ore-Bearing Rock in the Qiaomaichong Gold Deposits on the Southern Margin of the Qinling Orogenic Belt and Its Geological Significance. Geology in China, 42(5): 1303–1323 (in Chinese with English Abstract)

    Google Scholar 

  • Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf003748.5

    Article  Google Scholar 

  • Condie, K. C., 2007. Accretionary Orogens in Space and Time. Geological Society of America Memoirs, 200: 145–158

    Article  Google Scholar 

  • DallʼAgnol, R., de Oliveira, D. C., 2007. Oxidized, Magnetite-Series, Rapakivi-Type Granites of Carajás, Brazil: Implications for Classification and Petrogenesis of A-Type Granites. Lithos, 93(3/4): 215–233. https://doi.org/10.1016/j.lithos.2006.03.065

    Article  Google Scholar 

  • Dall’Agnol, R., Frost, C. D., Rämö, O. T., 2012. IGCP Project 510 “A-Type Granites and Related Rocks through Time”: Project Vita, Results, and Contribution to Granite Research. Lithos, 151: 1–16. https://doi.org/10.1016/j.lithos.2012.08.003

    Article  Google Scholar 

  • De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1-R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1/2/3/4): 183–210. https://doi.org/10.1016/0009-2541(80)90020.0

    Article  Google Scholar 

  • Dong, Y. P., Zhou, D. W., Zhang, G. W., et al., 1998. Geochemistry of the Caledonian Basic Volcanic Rocks in the South Margin of Qinling Orogenic Belt and Their Tectonic Implications. Geochimica, 27(5): 432–441 (in Chinese with English Abstract)

    Google Scholar 

  • Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002

    Article  Google Scholar 

  • Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009

    Article  Google Scholar 

  • Dostal, J., Kontak, D. J., Karl, S. M., 2014. The Early Jurassic Bokan Mountain Peralkaline Granitic Complex (southeastern Alaska): Geochemistry, Petrogenesis and Rare-Metal Mineralization. Lithos, 202/203: 395–412. https://doi.org/10.1016/j.lithos.2014.06.005

    Article  Google Scholar 

  • Dostal, J., Shellnutt, J. G., 2015. Origin of Peralkaline Granites of the Jurassic Bokan Mountain Complex (southeastern Alaska) Hosting Rare Metal Mineralization. International Geology Review, 58(1): 1–13. https://doi.org/10.1080/00206814.2015.1052995

    Article  Google Scholar 

  • Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-z

    Article  Google Scholar 

  • Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2

    Article  Google Scholar 

  • Feng, Z. Q., Liu, Y. J., Han, G. Q., et al., 2014. The Petrogenesis of 3.0 Ma Metagabbro Granite from the Tayuan Area in the Northern Segment of the Da Xing’an Mts and Its Tectonic Implication. Acta Petrologica Sinica, 30: 1982–1994 (in Chinese with English Abstract)

    Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39–53. https://doi.org/10.1093/petrology/egq0.0

    Article  Google Scholar 

  • Giret, A., Bonin, B., Léger, J.-M., 1980. Amphibole Compositional Trends in Oversaturated and Undersaturated Alkaline Plutonic Ring-Complexes. Canadian Mineralogist, 18: 481–495

    Google Scholar 

  • Grebennikov, A. V., 2014. A-Type Granites and Related Rocks: Petrogenesis and Classification. Russian Geology and Geophysics, 55(9): 1074–1086. https://doi.org/10.1016/j.rgg.2014.08.003

    Article  Google Scholar 

  • Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12): 2031–2048. https://doi.org/10.2138/am.2012.4276

    Article  Google Scholar 

  • Hawthorne, F. C., 1981. Crystal Chemistry of the Amphiboles. Canadian Mineralogist, 21: 173–480

    Google Scholar 

  • Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219.0

    Article  Google Scholar 

  • Jackson, M. G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts. Earth and Planetary Science Letters, 276(1/2): 175–186. https://doi.org/10.1016/j.epsl.2008.09.023

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193. https://doi.org/10.1017/s02635933000073.7

    Article  Google Scholar 

  • Jahn, B. M., Capdevila, R., Liu, D. Y., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5): 629–653. https://doi.org/10.1016/s1367-9120(03)00125.1

    Article  Google Scholar 

  • Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3/4): 521–539. https://doi.org/10.1016/j.lithos.2009.06.015

    Article  Google Scholar 

  • Jiang, W. C., Li, H., Wu, J. H., et al., 2018. A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 29(3): 537–555. https://doi.org/10.1007/s12583-017-0974.7

    Article  Google Scholar 

  • Katzir, Y., Litvinovsky, B. A., Jahn, B. M., et al., 2007. Interrelations between Coeval Mafic and A-Type Silicic Magmas from Composite Dykes in a Bimodal Suite of Southern Israel, Northernmost Arabian-Nubian Shield: Geochemical and Isotope Constraints. Lithos, 97(3/4): 336–364. https://doi.org/10.1016/j.lithos.2007.01.004

    Article  Google Scholar 

  • King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371

    Article  Google Scholar 

  • Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623–651. https://doi.org/10.1127/ejm/9/3.0623

    Article  Google Scholar 

  • Li, X. H., McCulloch, M. T., 1998. Geochemical Characteristics of Cretaceous Mafic Dikes from Northern Guangdong, SE China: Petrogenesis, Mantle Sources and Tectonic Significance. In: Flower, M. F. J., Chung, S.-L., Lo, Q.-H., et al., eds., Mantle Dynamics and Plate Interaction in East Asia. Geodynamics Series, 27: 405–419

    Google Scholar 

  • Li, X. H., Liu, D. Y., Sun, M., et al., 2004. Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 141(2): 225–231. https://doi.org/10.1017/s00167568030088.3

    Article  Google Scholar 

  • Li, H., Palinkaš, L. A., Watanabe, K., et al., 2018. Petrogenesis of Jurassic A-Type Granites Associated with Cu-Mo and W-Sn Deposits in the Central Nanling Region, South China: Relation to Mantle Upwelling and Intra-Continental Extension. Ore Geology Reviews, 92: 449–462. https://doi.org/10.1016/j.oregeorev.2017.11.029

    Article  Google Scholar 

  • Li, H., Watanabe, K., Yonezu, K., 2014. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews, 60: 14–35. https://doi.org/10.1016/j.oregeorev.2013.12.009

    Article  Google Scholar 

  • Li, S., 1991. Age and Genesis of the Alkaline Rocks in Northern Hubei Province. Acta Petrologica Sinica, 3: 27–36 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25: 552–558 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp0.2

    Article  Google Scholar 

  • Litvinovsky, B. A., Steele, I. M., Wickham, S. M., 2000. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41(5): 717–737. https://doi.org/10.1093/petrology/41.5.717

    Article  Google Scholar 

  • Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., et al., 2002. Petrogenesis of Syenite-Granite Suites from the Bryansky Complex (Transbaikalia, Russia): Implications for the Origin of A-Type Granitoid Magmas. Chemical Geology, 189(1/2): 105–133. https://doi.org/10.1016/s0009-2541(02)00142.0

    Article  Google Scholar 

  • Litvinovsky, B. A., Tsygankov, A. A., Jahn, B. M., et al., 2011. Origin and Evolution of Overlapping Calc-Alkaline and Alkaline Magmas: The Late Palaeozoic Post-Collisional Igneous Province of Transbaikalia (Russia). Lithos, 125(3/4): 845–874. https://doi.org/10.1016/j.lithos.2011.04.007

    Article  Google Scholar 

  • Litvinovsky, B. A., Jahn, B. M., Eyal, M., 2015. Mantle-Derived Sources of Syenites from the A-Type Igneous Suites—New Approach to the Provenance of Alkaline Silicic Magmas. Lithos, 232: 242–265. https://doi.org/10.1016/j.lithos.2015.06.008

    Article  Google Scholar 

  • Locock, A. J., 2012. An Excel Spreadsheet to Classify Chemical Analyses of Amphiboles Following the IMA 20.2 Recommendations. Computers & Geosciences, 62: 1–11. https://doi.org/10.1016/j.cageo.2013.09.011

    Article  Google Scholar 

  • Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs. 4.8

    Google Scholar 

  • Lubala, R. T., Frick, C., Rogers, J. H., et al., 1994. Petrogenesis of Syenites and Granites of the Schiel Alkaline Complex, Northern Transvaal, South Africa. The Journal of Geology, 102(3): 307–316. https://doi.org/10.1086.629673

    Article  Google Scholar 

  • Ludwig, K. R., 2003. Userʼs Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley

    Google Scholar 

  • Ma, C. Q., Yang, K. G., Ming, M. L., et al., 2004. The Timing of Tectonic Transition from Compression to Extension in Dabieshan: Evidence from Mesozoic Granites. Science China Series D: Earth Sciences, 47(5): 453–462

    Google Scholar 

  • Ma, C. Q., She, Z. B., Xu, P., et al., 2005. Silurian A-Type Granitoids in the Southern Margin of the Tongbai-Dabieshan: Evidence from SHRIMP Zircon Geochronology and Geochemistry. Science China Series D: Earth Sciences, 48(8): 1134–1145

    Article  Google Scholar 

  • Ma, C. Q., She, Z. B., Zhang, J. Y., et al., 2006. Crustal Roots, Orogenic Heat and Magmatism. Earth Science Frontiers, 13(2): 130–139 (in Chinese with English Abstract)

    Google Scholar 

  • Martin, R. F., 2006. A-Type Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment. Lithos, 91(1/2/3/4): 125–136. https://doi.org/10.1016/j.lithos.2006.03.012

    Article  Google Scholar 

  • Martin, R. F., 2007. Amphiboles in the Igneous Environment. Reviews in Mineralogy and Geochemistry, 67(1): 323–358. https://doi.org/10.2138/rmg.2007.67.9

    Article  Google Scholar 

  • Nardi, L. V. S., de Fatima Bitencourt, M., 2009. A-Type Granitic Rocks in Post-Collisional Settings in Southernmost Brazil: Their Classification and Relationship with Tectonics and Magmatic Series. The Canadian Mineralogist, 47(6): 1493–1503. https://doi.org/10.3749/canmin.47.6.1493

    Article  Google Scholar 

  • Nie, H., Wan, X., Zhang, H., et al., 2016. Ordovician and Triassic Mafic Dykes in the Wudang Terrane: Evidence for Opening and Closure of the South Qinling Ocean Basin, Central China. Lithos, 266/267: 1–15. https://doi.org/10.1016/j.lithos.2016.10.009

    Article  Google Scholar 

  • Niu, Y. L., OʼHara, M. J., 2009. MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust: New Perspectives on Crustal Growth, Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle. Lithos, 112(1/2): 1–17. https://doi.org/10.1016/j.lithos.2008.12.009

    Article  Google Scholar 

  • Papoutsa, A., Pe-Piper, G., 2014. Geochemical Variation of Amphiboles in A-Type Granites as an Indicator of Complex Magmatic Systems: Wentworth Pluton, Nova Scotia, Canada. Chemical Geology, 384: 120–134. https://doi.org/10.1016/j.chemgeo.2014.07.001

    Article  Google Scholar 

  • Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743–746. https://doi.org/10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2

    Article  Google Scholar 

  • Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Peng, P., Liu, F., Zhai, M. G., et al., 2012. Age of the Miyun Dyke Swarm: Constraints on the Maximum Depositional Age of the Changcheng System. Chinese Science Bulletin, 57(1): 105–110. https://doi.org/10.1007/s11434-011-4771.x

    Article  Google Scholar 

  • Pe-Piper, G., 2007. Relationship of Amphibole Composition to Host-Rock Geochemistry: The A-Type Gabbro-Granite Wentworth Pluton, Cobequid Shear Zone, Eastern Canada. European Journal of Mineralogy, 19(1): 29–38. https://doi.org/10.1127/0935-1221/2007/0019.0029

    Article  Google Scholar 

  • Qiu, J. X., 1993. Alkaline Rocks in Qinling-Dabashan Mountains. Geological Publishing House, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64. https://doi.org/10.1016/B0-08-043751-6/03016.4

    Google Scholar 

  • Shand, S. J., 1943. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons, New York. 1–350

    Google Scholar 

  • Shellnutt, J. G., Zhou, M. F., 2007. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 243(3/4): 286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022

    Article  Google Scholar 

  • Shellnutt, J. G., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35(1): 45–55. https://doi.org/10.1016/j.jseaes.2008.12.003

    Article  Google Scholar 

  • Shellnutt, J. G., Jahn, B. M., Zhou, M. F., 2011. Crustally-Derived Granites in the Panzhihua Region, SW China: Implications for Felsic Magmatism in the Emeishan Large Igneous Province. Lithos, 123(1/2/3/4): 145–157. https://doi.org/10.1016/j.lithos.2010.10.016

    Article  Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Sutcliffe, R. H., Smith, A. R., Doherty, W., et al., 1990. Mantle Derivation of Archean Amphibole-Bearing Granitoid and Associated Mafic Rocks: Evidence from the Southern Superior Province, Canada. Contributions to Mineralogy and Petrology, 105(3): 255–274. https://doi.org/10.1007/bf003065.8

    Article  Google Scholar 

  • Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261–280. https://doi.org/10.1086.629302

    Article  Google Scholar 

  • Taylor, S. R., 1977. Island Arc Models and the Composition of the Continental Crust. In: Talwani, M., Pitman, W. C. III, eds., Am. Geophys. Union Maurice Ewing Series, 1: 325–335. https://doi.org/10.1029/me001.0325

    Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. 3.2

    Google Scholar 

  • Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151–179. https://doi.org/10.1016/0024-4937(92)90029.x

    Article  Google Scholar 

  • Upton, B. G. J., Emeleus, L. M., Heaman, C. H., et al., 2003. Magmatism of the Mid-Proterozoic Gardar Province, South Greenland: Chronology, Petrogenesis and Geological Setting. Lithos, 68(1/2): 43–65. https://doi.org/10.1016/s0024-4937(03)00030.6

    Article  Google Scholar 

  • Vilalva, F. C. J., Vlach, S. R. F., 2014. Geology, Petrography and Geochemistry of the A-Type Granites from the Morro Redondo Complex (PR-SC), Southern Brazil, Graciosa Province. Anais da Academia Brasileira de Ciências, 86(1): 85–116. https://doi.org/10.1590/0001.37652014108312

    Article  Google Scholar 

  • Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- And A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164–182. https://doi.org/10.1016/j.chemgeo.2017.09.033

    Article  Google Scholar 

  • Wang, R. R., Xu, Z. Q., Santosh, M., et al., 2016. Late Neoproterozoic Magmatism in South Qinling, Central China: Geochemistry, Zircon UPb-Lu-Hf Isotopes and Tectonic Implications. Tectonophysics, 683: 43–61. https://doi.org/10.1016/j.tecto.2016.05.050

    Article  Google Scholar 

  • Wang, R. R., Xu, Z. Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270–288. https://doi.org/10.1016/j.tecto.2017.05.021

    Article  Google Scholar 

  • Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217–1232. https://doi.org/10.1016/0016-7037(95)00038.2

    Article  Google Scholar 

  • Wei, C. S., Zheng, Y. F., Zhao, Z. F., et al., 2002. Oxygen and Neodymium Isotope Evidence for Recycling of Juvenile Crust in Northeast China. Geology, 30(4): 375–378. https://doi.org/10.1130/0091-7613(2002)030<0375:oanief>2.0.co;2

    Article  Google Scholar 

  • Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf004022.2

    Article  Google Scholar 

  • Winter, J. D., 2001. An Introduction to Igneous and Metamorphic Petrology: Upper Saddle River. Prentice Hall, New Jersey. 6.7

    Google Scholar 

  • Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/s0009-2541(02)00018.9

    Article  Google Scholar 

  • Xu, C., Campbell, I. H., Allen, C. M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1/2): 118–128. https://doi.org/10.1016/j.lithos.2008.03.002

    Article  Google Scholar 

  • Yu, X. H., 1992. The Relation of Alkaline Rocks in the Qinling-Daba Mountains Region and the Tectonic Evolution of the Orogen and Their Features. Regional Geology of China, 3: 233–240 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing. 1–855 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, C. L., Gao, S., Yuan, H. L., et al., 2007. Sr-Nd-Pb Isotopes of the Early Paleozoic Mafic-Ultramafic Dykes and Basalts from South Qinling Belt and Their Implications for Mantle Composition. Science in China Series D: Earth Sciences, 50(9): 1293–1301. https://doi.org/10.1007/s11430-007-0088.7

    Article  Google Scholar 

  • Zhang, X., 2010. The Dynamic Mechanism and Geological Significance of Mafic Intrusion in the Ziyang-Zhenba Area, South Qinling: [Dissertation]. Chang’an University, Xi’an (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, X. H., Zhang, H. F., Jiang, N., et al., 2010. Early Devonian Alkaline Intrusive Complex from the Northern North China Craton: A Petrological Monitor of Post-Collisional Tectonics. Journal of the Geological Society, 167(4): 717–730. https://doi.org/10.1144/0016-76492009.110

    Article  Google Scholar 

  • Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6): 1374–1380. https://doi.org/10.1017/s14319276160118.x

    Article  Google Scholar 

  • Zhang, W. X., Zhu, L. Q., Wang, H., et al., 2018. Generation of Post-Collisional Normal Calc-Alkaline and Adakitic Granites in the Tongbai Orogen, Central China. Lithos, 296–299: 513–531. https://doi.org/10.1016/j.lithos.2017.11.033

    Article  Google Scholar 

  • Zhu, G., Wang, Y. S., Wang, W., et al., 2017. An Accreted Micro-Continent in the North of the Dabie Orogen, East China: Evidence from Detrital Zircon Dating. Tectonophysics, 698: 47–64. https://doi.org/10.1016/j.tecto.2017.01.004

    Article  Google Scholar 

  • Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425

    Article  Google Scholar 

Download references

Acknowledgements

Professor Changqian Ma has received long-term guidance and mentorship from Prof. Zhendong You, which is highly appreciated. We also acknowledge the support from the National Natural Science Foundation of China (No. 41502046), partial financial support by the China Geological Survey (No. DD20160030), and the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (No. CUGCJ1711) are also acknowledged. We also thank Prof. Bernard Bonin and two anonymous reviewers whose painstaking reviews have significantly improved this work. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0877-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqian Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.A., Ma, C., Wang, L. et al. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. J. Earth Sci. 29, 1181–1202 (2018). https://doi.org/10.1007/s12583-018-0877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0877-2

Key Words

Navigation