Skip to main content
Log in

Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Due to heterogeneous pore distributions within shales, petrophysical properties of shales determined by scanning electron microscopy (SEM) and X-ray computed tomography (CT) methods strongly depend on the observed domain size (analysis scale). In this paper, the influence of the analysis scale on areal and bulk porosities and pore size distribution (PSD) for lacustrine shales from the Dongying sag of Bohai Bay Basin, China were investigated using broad ion beam (BIB)-SEM and X-ray CT methods. The BIB-SEM cross-sections with high imaging resolution (10 nm/pixel) and a large field of view (>1 mm2) mainly describe the 2D nanoscale pore system in the two shales (samples F41#-2 and Y556#-1), while CTbased 3D reconstructions with resolutions of 0.42 (F41#-1) and 0.5 μm/pixel (H172#-1) reflect the 3D submicron pore system. The results indicate that the areal (bulk) porosity exhibits a multiple power-law distribution with increasing analysis area (volume), which can be used to extrapolate the porosity of a given area (volume). Based on SEM and CT investigations, the sizes of the minimum representative elementary areas (REAs) and volumes (REVs) were determined respectively, which are closely associated with the heterogeneousness of the pore system. Minimum REAs are proposed to be 2.93×104 (F41#-2) and 0.91×104 μm2 (Y556#-1), and minimum REVs are 0.016 (F41#-1) and 0.027 mm3 (H172#-1). As the analyzed areas (volumes) are larger than the minimum REA (REV), obtained 2D (3D) PSDs are comparable to each other and can be considered to reflect the shale PSD. These results provide insights into the porosity and PSD characterization of shales by SEM and X-ray CT methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boruah, A., Ganapathi, S., 2015. Microstructure and Pore System Analysis of Barren Measures Shale of Raniganj Field, India. Journal of Natural Gas Science and Engineering, 26: 427–437. https://doi.org/10.1016/j.jngse.2015.05.042

    Article  Google Scholar 

  • Cai, J. C., Yu, B. M., Zou, M. Q., et al., 2010. Fractal Characterization of Spontaneous Co-Current Imbibition in Porous Media. Energy & Fuels, 24(3): 1860–1867. https://doi.org/10.1021/ef901413p

    Article  Google Scholar 

  • Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129(4): 173–181. https://doi.org/10.1016/j.fuel.2014.03.058

    Article  Google Scholar 

  • Chen, L., Jiang, Z. X., Liu, K. Y., et al., 2017. Quantitative Characterization of Micropore Structure for Organic-Rich Lower Silurian Shale in the Upper Yangtze Platform, South China: Implications for Shale Gas Adsorption Capacity. Advances in Geo-Energy Research, 1(2): 111–121. https://doi.org/10.26804/ager.2017.02.07

    Article  Google Scholar 

  • Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012a. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665–677. https://doi.org/10.1306/08151110188

    Article  Google Scholar 

  • Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012b. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103(23): 26–31. https://doi.org/10.1016/j.coal.2012.08.004

    Article  Google Scholar 

  • Guo, X. J., Shen, Y. H., He, S. L., 2015. Quantitative Pore Characterization and the Relationship between Pore Distributions and Organic Matter in Shale Based on Nano-CT Image Analysis: A Case Study for a Lacustrine Shale Reservoir in the Triassic Chang 7 Member, Ordos Basin, China. Journal of Natural Gas Science and Engineering, 27(Suppl.): 1630–1640. https://doi.org/10.1016/j.jngse.2015.10.033

    Google Scholar 

  • Hao, Y., Chen, F., Zhu, J., et al., 2014. Reservoir Space of the Es3 3-Es4 1 Shale in Dongying Sag. International Journal of Mining Science and Technology, 24(4): 425–431. https://doi.org/10.3969/j.issn.2095-2686.2014.04.002

    Article  Google Scholar 

  • Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution: A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8: 1–13. https://doi.org/10.1016/j.juogr.2014.06.002

    Article  Google Scholar 

  • Houben, M. E., 2013. In situ Characterization of the Microstructure and Porosity of Opalinus Clay (Mont Terri Rock Laboratory, Switzerland). Publikationsserver der RWTH Aachen University, Aachen, Germany

    Google Scholar 

  • Houben, M. E., Barnhoorn, A., Lie-A-Fat, J., et al., 2016. Microstructural Characteristics of the Whitby Mudstone Formation (UK). Marine and Petroleum Geology, 70: 185–200. https://doi.org/10.1016/j.marpetgeo. 2015.11.011

    Article  Google Scholar 

  • Huang, C. Y., Zhang, J. C., Wang, H., et al., 2015. Lacustrine Shale Deposition and Variable Tectonic Accommodation in the Rift Basins of the Bohai Bay Basin in Eastern China. Journal of Earth Science, 26(5): 700–711. https://doi.org/10.1007/s12583-015-0602-3

    Article  Google Scholar 

  • Josh, M., Esteban, L., Delle Piane, C., et al., 2012. Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 88/89(2): 107–124. https://doi.org/10.1016/j.petrol.2012.01.023

    Google Scholar 

  • Kelly, S., El-Sobky, H., Torres-Verdín, C., et al., 2015. Assessing the Utility of FIB-SEM Images for Shale Digital Rock Physics. Advances in Water Resources, 95: 302–316. https://doi.org/10.1016/j.advwatres. 2015.06.010

    Article  Google Scholar 

  • Klaver, J., Desbois, G., Littke, R., et al., 2015. BIB-SEM Characterization of Pore Space Morphology and Distribution in Postmature to Overmature Samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59: 451–466. https://doi.org/10.1016/j.marpetgeo. 2014.09.020

    Article  Google Scholar 

  • Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158: 78–89. https://doi.org/10.1016/j.coal.2016.03.003

    Article  Google Scholar 

  • Klaver, J., Desbois, G., Urai, J. L., et al., 2012. BIB-SEM Study of the Pore Space Morphology in Early Mature Posidonia Shale from the Hils Area, Germany. International Journal of Coal Geology, 103(23): 12–25. https://doi.org/10.1016/j.coal.2012.06.012

    Article  Google Scholar 

  • Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112(3): 7–16. https://doi.org/10.1016/j.petrol. 2013.11.022

    Article  Google Scholar 

  • Lee, S., Fischer, T. B., Stokes, M. R., et al., 2014. Dehydration Effect on the Pore Size, Porosity, and Fractal Parameters of Shale Rocks: Ultrasmall-Angle X-Ray Scattering Study. Energy & Fuels, 28(11): 6772–6779. https://doi.org/10.1021/ef501427d

    Article  Google Scholar 

  • Lemmens, H. J., Butcher, R., Botha, P. W. S. K., 2011. FIB/SEM and SEM/EDX: A New Dawn for the SEM in the Core Lab? Petrophysics, 52(6): 452–456

    Google Scholar 

  • Li, J. Q., Lu, S. F., Xue, H. T., et al., 2015. Quantitative Evaluation on the Elastic Property of Oil-Bearing Mudstone/Shale from a Chinese Continental Basin. Energy Exploration & Exploitation, 33(6): 851–868. https://doi.org/10.1260/0144-5987.33.6.851

    Article  Google Scholar 

  • Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2017. Microstructural Characterization of the Clay-Rich Oil Shales by Nuclear Magnetic Resonance (NMR). Journal of Nanoscience and Nanotechnology, 17(9): 7026–7034. https://doi.org/10.1166/jnn.2017.14440

    Article  Google Scholar 

  • Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?. Organic Geochemistry, 87(3): 119–132. https://doi.org/10.1016/j.orggeochem.2015.07.010

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks. Gulf Coast Association of Geological Societies Journal, 3: 51–60

    Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. https://doi.org/10.1306/08171111061

    Article  Google Scholar 

  • Mayo, S., Josh, M., Nesterets, Y., et al., 2015. Quantitative Micro-Porosity Characterization Using Synchrotron Micro-CT and Xenon K-Edge Subtraction in Sandstones, Carbonates, Shales and Coal. Fuel, 154: 167–173. https://doi.org/10.1016/j.fuel.2015.03.046

    Article  Google Scholar 

  • Metwally, Y. M., Chesnokov, E. M., 2012. Clay Mineral Transformation as a Major Source for Authigenic Quartz in Thermo-Mature Gas Shale. Applied Clay Science, 55: 138–150. https://doi.org/10.1016/j.clay.2011.11.007

    Article  Google Scholar 

  • Münch, B., Holzer, L., 2008. Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion. Journal of the American Ceramic Society, 91(12): 4059–4067. https://doi.org/10.1111/j.1551-2916.2008.02736.x

    Article  Google Scholar 

  • Peng, S., Hu, Q. H., Dultz, S., et al., 2012. Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Journal of Hydrology, 472/473: 254–261. https://doi.org/10.1016/j.jhydrol.2012.09.034

    Google Scholar 

  • Sun, M. D., Yu, B. S., Hu, Q. H., et al., 2016. Nanoscale Pore Characteristics of the Lower Cambrian Niutitang Formation Shale: A Case Study from Well Yuke #1 in the Southeast of Chongqing, China. International Journal of Coal Geology, 154/155: 16–29. https://doi.org/10.1016/j.coal.2015.11.015

    Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M., et al., 2016. Multiscale Study for Stochastic Characterization of Shale Samples. Advances in Water Resources, 89: 91–103. https://doi.org/10.1016/j.advwatres.2016.01.008

    Article  Google Scholar 

  • Tang, X. L., Jiang, Z. X., Li, Z., et al., 2015. The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 464–473

    Article  Google Scholar 

  • Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8–19. https://doi.org/10.1016/j.marpetgeo.2013.07.008

    Article  Google Scholar 

  • Tiwari, P., Deo, M., Lin, C. L., et al., 2013. Characterization of Oil Shale Pore Structure before and after Pyrolysis by Using X-Ray Micro CT. Fuel, 107(9): 547–554. https://doi.org/10.1016/j.fuel.2013.01.006

    Article  Google Scholar 

  • Wang, G. C., Ju, Y. W., 2015. Organic Shale Micropore and Mesopore Structure Characterization by Ultra-Low Pressure N2 Physisorption: Experimental Procedure and Interpretation Model. Journal of Natural Gas Science and Engineering, 27: 452–465. https://doi.org/10.1016/j.jngse.2015.08.003

    Article  Google Scholar 

  • Wang, Y., Zhu, Y. M., Chen, S., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945–955. https://doi.org/10.1021/ef402159e

    Article  Google Scholar 

  • Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273–283. https://doi.org/10.1103/physrev.17.273

    Article  Google Scholar 

  • Wu, S. T., Zhu, R. K., Cui, J. G., et al., 2015. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 185–195. https://doi.org/10.1016/s1876-3804(15)30005-7

    Article  Google Scholar 

  • Yao, Y. B., Liu, D. M., 2012. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel, 95: 152–158. https://doi.org/10.1016/j.fuel.2011.12.039

    Article  Google Scholar 

  • Yao, Y. B., Liu, D. M., Cai, Y. D., et al., 2010. Advanced Characterization of Pores and Fractures in Coals by Nuclear Magnetic Resonance and XRay Computed Tomography. Science China Earth Sciences, 53(6): 854–862. https://doi.org/10.1007/s11430-010-0057-4

    Article  Google Scholar 

  • Yao, Y. B., Liu, D. M., Che, Y., et al., 2009. Non-Destructive Characterization of Coal Samples from China Using Microfocus X-Ray Computed Tomography. International Journal of Coal Geology, 80(2): 113–123. https://doi.org/10.1016/j.coal.2009.08.001

    Article  Google Scholar 

  • Zhang, L. Y., Bao, Y. S., Li, J. Y., et al., 2014. Movability of Lacustrine Shale Oil: A Case Study of Dongying Sag, Jiyang Depression, Bohai Bay Basin. Petroleum Exploration and Development, 41(6): 703–711. https://doi.org/10.1016/S1876-3804(14)60084-7

    Article  Google Scholar 

  • Zhang, L. Y., Liu, Q., Zhu, R. F., et al., 2009. Source Rocks in Mesozoic–Cenozoic Continental Rift Basins, East China: A Case from Dongying Depression, Bohai Bay Basin. Organic Geochemistry, 40(2): 229–242. https://doi.org/10.1016/j.orggeochem.2008.10.013

    Article  Google Scholar 

  • Zhang, N., He, M. C., Zhang, B., et al., 2016. Pore Structure Characteristics and Permeability of Deep Sedimentary Rocks Determined by Mercury Intrusion Porosimetry. Journal of Earth Science, 27(4): 670–676. https://doi.org/10.1007/s12583-016-0662-z

    Article  Google Scholar 

  • Zhang, P. F., Lu, S. F., Li, J. Q., et al., 2017. Characterization of Shale Pore System: A Case Study of Paleogene Xin’gouzui Formation in the Jianghan Basin, China. Marine and Petroleum Geology, 79: 321–334. https://doi.org/10.1016/j.marpetgeo.2016.10.014

    Article  Google Scholar 

  • Zhang, P. F., Lu, S. F., Li, J. Q., et al., 2018. Permeability Evaluation on Oil-Window Shale Based on Hydraulic Flow Unit: A New Approach. Advances in Geo-Energy Research, 2(1): 1–13. https://doi.org/10.26804/ager.2018.01.01

    Article  Google Scholar 

  • Zhou, S. W., Yan, G., Xue, H. Q., et al., 2016. 2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB-SEM. Marine and Petroleum Geology, 73: 174–180. https://doi.org/10.1016/j.marpetgeo.2016.02.033

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 41602131, 41330313, 41572122, and 41672130), the Fundamental Research Funds for the Central Universities of China (Nos. 17CX02074, 15CX02086A, and 17CX06036), and the Research Project Funded by the SINOPEC Corp. (No. P17027-3). The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0835-z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangfang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, P., Lu, S. et al. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. J. Earth Sci. 30, 823–833 (2019). https://doi.org/10.1007/s12583-018-0835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0835-z

Key Words

Navigation