Skip to main content
Log in

Sequential and simultaneous joint inversion of resistivity and IP sounding data using particle swarm optimization

  • Applied Geophysics
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

In order to interpret the vertical electrical sounding data more reliably and effectively in the case of lacking proper priori information, two inverse schemes are proposed to invert combined resistivity and induced polarization data by using particle swarm optimization technique. Based on the computational formula of induced polarization, the inversion for chargeability/polarizability data can be transformed into inverting equivalent resistivity data. Then, the inversion for combined data can be decomposed into two procedures: inverting resistivity data and inverting equivalent resistivity data. A sequential inversion scheme is presented to run the two procedures sequentially. Contrast to the sequential scheme, a simultaneous one is proposed to invert resistivity and induced polarization data simultaneously. Both the sequential and simultaneous schemes are performed via centered-progressive particle swarm optimization algorithm for more exploratory purpose. Numerical experiments show that both the designed inversion algorithms can invert resistivity and induced polarization data successfully with fast convergence and high accuracy, even performed in a large search space. The inverse results are comparable to the results from generalized linear method. As an approximate importance sampler, the particle swarm optimization based algorithm can provide posterior analysis conveniently. We employ the posterior probability distributions of inverted model parameters to evaluate the performance and uncertainty of inversion. The posterior analysis and further field data testing show that the proposed inversion algorithms perform good sampling of the equivalence region and make sure that the global optimum can locate in the high probability areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Atekwana, E. A., Aal, G. Z. A., 2015. Iron Biomineralization Controls on Geophysical Signatures of Hydrocarbon Contaminated Sediments. Journal of Earth Science, 26(6): 835–843. doi:10.1007/s12583-015-0611-2

    Article  Google Scholar 

  • Chandra, S., Dewandel, B., Dutta, S., et al., 2010. Geophysical Model of Geological Discontinuities in a Granitic Aquifer: Analyzing Small Scale Variability of Electrical Resistivity for Groundwater Occurrences. Journal of Applied Geophysics, 71(4): 137–148. doi:10.1016/j.jappgeo.2010.06.003

    Article  Google Scholar 

  • Clerc, M. A., Kennedy, J., 2002. The Particle Swarm-Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary Computation, 6(1): 58–73. doi:10.1109/4235.985692

    Article  Google Scholar 

  • Cui, Y. A., Zhu, X. X., Chen, Z. X., et al., 2016. Performance Evaluation for Intelligent Optimization Algorithms in Self-Potential Data Inversion. Journal of Central South University, 23(10): 2659–2668. doi:10.1007/s11771-016-3327-2

    Article  Google Scholar 

  • Fernández-Martínez, J. L., García-Gonzalo, E., Naudet, V., 2010a. Particle Swarm Optimization Applied to Solving and Appraising the Streaming-Potential Inverse Problem. Geophysics, 75(4): WA3–WA15. doi:10.1190/1.3460842

    Article  Google Scholar 

  • Fernández-Martínez, J. L., García-Gonzalo, E., Fernández-Álvarez, J. P., et al., 2010b. PSO: A Powerful Algorithm to Solve Geophysical Inverse Problems Application to a 1D-DC Resistivity Case. Journal of Applied Geophysics, 71(1): 13–25

    Article  Google Scholar 

  • Fernández-Martínez, J. L., Mukerji, T., García-Gonzalo, E., et al., 2012. Reservoir Characterization and Inversion Uncertainty via a Family of Particle Swarm Optimizers. Geophysics, 77(1): M1–M16. doi:10.1190/geo2011-0041.1

    Article  Google Scholar 

  • Fernández-Martínez, J. L., Fernández-Álvarez, J. P., García-Gonzalo, E., et al., 2008. Particle Swarm Optimization (PSO): A Simple and Powerful Algorithm Family for Geophysical Inversion. SEG, Expanded Abstracts, 27(1): 3568–3571. doi:10.1190/1.3064068

    Google Scholar 

  • Fernández-Martínez, J. L., García-Gonzalo, E., 2009. The PSO Family: Deduction, Stochastic Analysis and Comparison. Swarm Intelligence, 3(4): 245–273. doi:10.1007/s11721-009-0034-8

    Article  Google Scholar 

  • Gallas, J. D. F., Taioli, F., Filho, W. M., 2011. Induced Polarization, Resistivity, and Self-Potential: A Case History of Contamination Evaluation Due to Landfill Leakage. Environmental Earth Sciences, 63(2): 251–261. doi:10.1007/s12665-010-0696-y

    Article  Google Scholar 

  • Johnson, T. C., Versteeg, R. J., Ward, A., et al., 2010. Improved Hydrogeophysical Characterization and Monitoring through Parallel Modeling and Inversion of Time-Domain Resistivity and Induced-Polarization Data. Geophysics, 75(4): WA27–WA41. doi:10.1190/1.3475513

    Article  Google Scholar 

  • Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. Proceedings of ICNN'95—International Conference on Neural Networks. IEEE Service Center, Piscataway, NJ. 1942–1948. doi:10.1109/icnn.1995.488968

    Book  Google Scholar 

  • Koefoed, O., 1979. Geosounding Principles. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Masson, F., Mouyen, M., Hwang, C., et al., 2012. Lithospheric Structure of Taiwan from Gravity Modelling and Sequential Inversion of Seismological and Gravity Data. Tectonophysics, 578: 3–9. doi:10.1016/j.tecto.2012.04.012

    Article  Google Scholar 

  • Peksen, E., Yas, T., Kayman, A. Y., et al., 2011. Application of Particle Swarm Optimization on Self-Potential Data. Journal of Applied Geophysics, 75(2): 305–318. doi:10.1016/j.jappgeo.2011.07.013

    Article  Google Scholar 

  • Niwas, S., Gupta, P. K., 2011. Combined Straightforward Inversion of Resistivity and Induced Polarization (Time-Domain) Sounding Data. Journal of Applied Geophysics, 75(2): 319–326. doi:10.1016/j.jappgeo.2011.06.024

    Article  Google Scholar 

  • Santos, F. A. M., El-Kaliouby, H. M., 2010. Comparative Study of Local Versus Global Methods for 1D Joint Inversion of Direct Current Resistivity and Time-Domain Electromagnetic Data. Near Surface Geophysics, 8(2): 135–143. doi:10.3997/1873-0604.2009056

    Google Scholar 

  • Santos, F. A. M., 2010. Inversion of Self-Potential of Idealized Bodies’ Anomalies Using Particle Swarm Optimization. Computers & Geosciences, 36(9): 1185–1190. doi:10.1016/j.cageo.2010.01.011

    Article  Google Scholar 

  • Seigel, H. O., 1959. Mathematical Formulation and Type Curves for Induced Polarization. Geophysics, 24(3): 547–565. doi:10.1190/1.1438625

    Article  Google Scholar 

  • Sen Mrinal, K., Stoffa, P. L., 2013. Global Optimization Methods in Geophysical Inversion (2nd Edition). Cambridge University Press, Cambridge

    Google Scholar 

  • Shaw, R., Srivastava, S., 2007. Particle Swarm Optimization: A New Tool to Invert Geophysical Data. Geophysics, 72(2): F75–F83. doi:10.1190/1.2432481

    Article  Google Scholar 

  • Song, X. H., Tang, L., Lü, X. C., et al., 2012. Application of Particle Swarm Optimization to Interpret Rayleigh Wave Dispersion Curves. Journal of Applied Geophysics, 84: 1–13. doi:10.1016/j.jappgeo.2012.05.011

    Article  Google Scholar 

  • Tang, J. T., Wang, F. Y., Xiao, X., et al., 2011. 2.5-D DCResistivity Modeling Considering Flexibility and Accuracy. Journal of Earth Science, 22(1): 124–130. doi:10.1007/s12583-011-0163-z

    Article  Google Scholar 

  • Trelea, I. C., 2003. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters, 85(6): 317–325. doi:10.1016/s0020-0190(02)00447-7

    Article  Google Scholar 

  • Veeken, P. C., Legeydo, P. J., Davidenko, Y. A., et al., 2009. Benefits of the Induced Polarization Geoelectric Method to Hydrocarbon Exploration. Geophysics, 74(2): B47–B59. doi:10.1190/1.3076607

    Article  Google Scholar 

  • Ye, Y. X., Hu, X. Y., Xu, D., 2015. A Goal-Oriented Adaptive Finite Element Method for 3D Resistivity Modeling Using Dual-Error Weighting Approach. Journal of Earth Science, 26(6): 821–826. doi:10.1007/s12583-015-0598-8

    Article  Google Scholar 

  • Zhu, J. F., Currens, J. C., Dinger, J. S., 2011. Challenges of Using Electrical Resistivity Method to Locate Karst Conduits—A Field Case in the Inner Bluegrass Region, Kentucky. Journal of Applied Geophysics, 75(3): 523–530. doi:10.1016/j.jappgeo.2011.08.009

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 41574123). We greatly appreciate Dr. Dai for providing us with his recently acquired field data from Africa. We also acknowledge the anonymous reviewers and editors for careful review of our manuscript and providing us with their comments and suggestion to improve the quality of the manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0749-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi’an Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chen, Z., Zhu, X. et al. Sequential and simultaneous joint inversion of resistivity and IP sounding data using particle swarm optimization. J. Earth Sci. 28, 709–718 (2017). https://doi.org/10.1007/s12583-017-0749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0749-1

Key words

Navigation